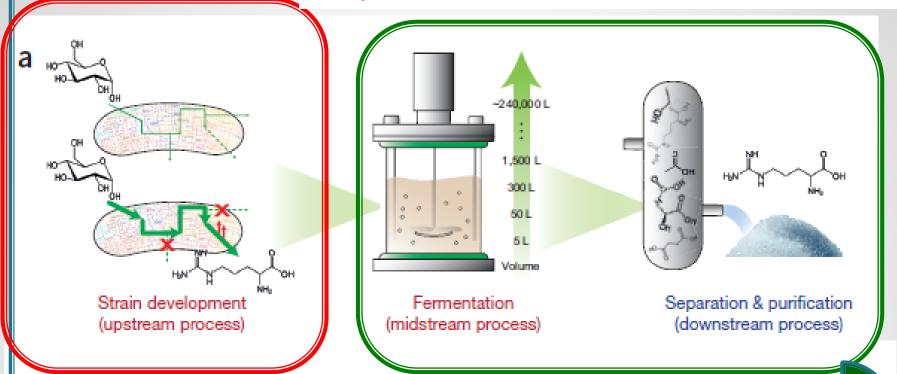
Eat Well, Live Well.

Combination of novel technologies with traditional strategies for microbial production of amino acids and related desirable compounds


Ajinomoto-Genetika Research Institute, Moscow, Russia

Nataliya V. Stoynova October 04, 2018

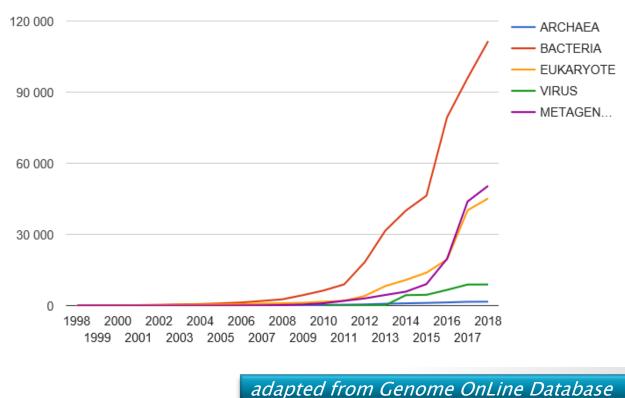
Amino acids production and usage

L-Glu	Fermentation	Food-use
DL-Met	Chemical synthesis	Food/Feed-use
L-Lys	Fermentation	Feed-use
Gly	Chemical synthesis	Pharmaceutical, food-use
L-Phe	Fermentation, enzymatic synthesis	Food-use, amino acid-based sweeteners
L-Asp	Enzymatic synthesis	Amino acid-based sweeteners
L-Thr	Fermentation	Feed-use
L-Cys	Extraction, chemical synthesis, fermentation	Pharmaceutical, food-use
DL-Ala	Chemical synthesis	Food-use, amino acid-based sweeteners
L-Arg	Fermentation	Pharmaceutical, food-use
L-Trp	Fermentation, enzymatic synthesis	Pharmaceutical, feed-use
L-Val	Fermentation	Pharmaceutical, food-use, feed-use
L-Leu	Fermentation	Pharmaceutical, food-use
L-lle	Fermentation	Pharmaceutical, feed-use
L-His	Fermentation	Pharmaceutical, feed-use
L-Pro	Fermentation	Pharmaceutical
L-Ser	Fermentation	Pharmaceutical
L-Tyr	Extraction	Pharmaceutical

adapted from Nature Biotechnol 2015, 33:1061-1072

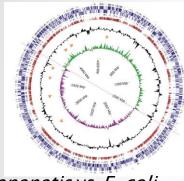
Ajinomoto-Genetika Research Institute (AGRI): R&D on fermentative microbes for amino acids, nucleotides and other products by means of traditional (pathway focused) metabolic engineering strategies and corresponding efficient tools along with omics-based and evolutionary approaches.

 Rational design
 Random editing
 HTP screening
 HTP analysis


 Adaptive evolution
 Genome analysis
 Transcriptome analysis

 Traditional selection
 Molecular modeling
 Genome editing tools
 Cultivation optimization

1. Host selection

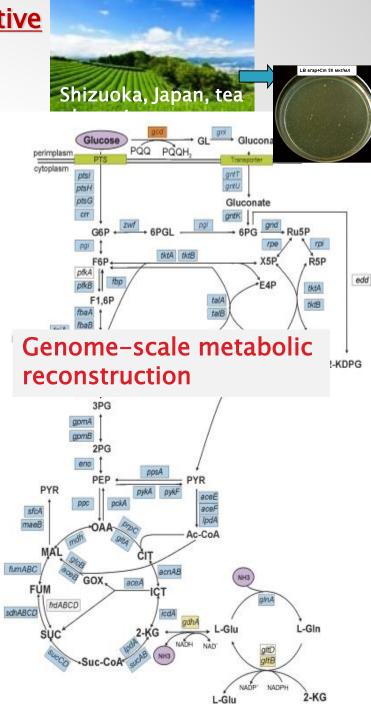

C. glutamicum, E. coli – traditional hosts for microbial synthesis of AA and their derivatives. But now

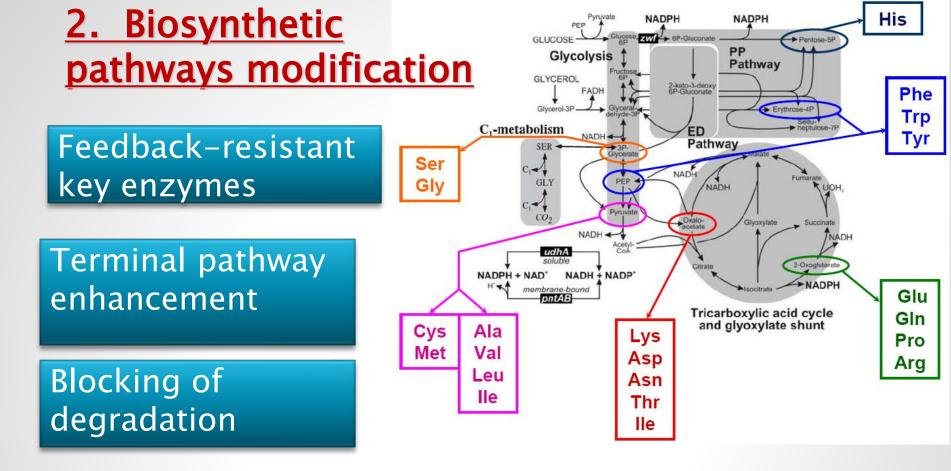
Genome sequencing projects

Host strain: an example of workable alternative

Pantoea ananatis: Gram-negative acidophilic bacterium belonging to the family Enterobacteriaceae, capable of growing on a variety of sugars at acidic and neutral pH; resistant to L-Glu

P. ananatis vs E. coli


Genome annotation

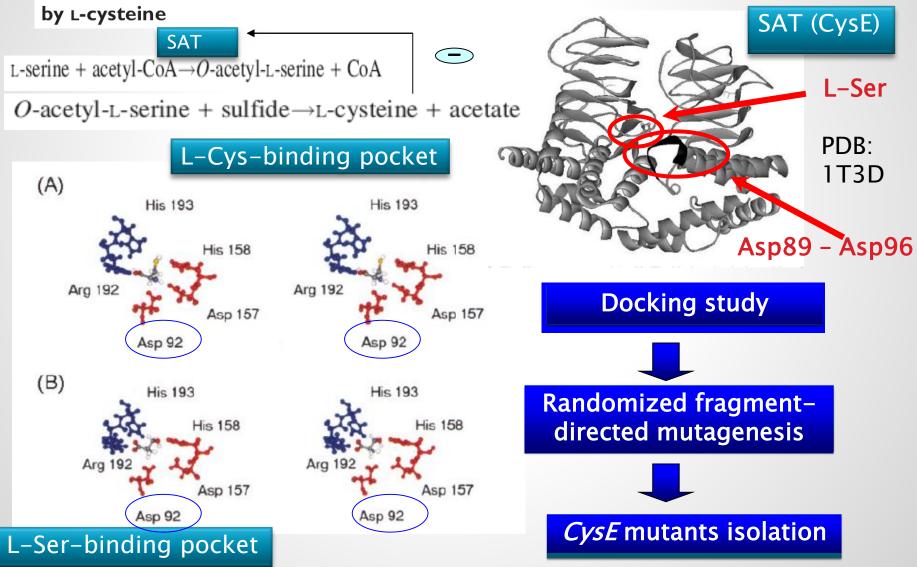

<u>Hara Y, Kadotani N, Izui H, Katashkina JI, Kuvaeva TM, Andreeva IG, Golubeva LI, Malko DB, Makeev VJ, Mashko SV, Kozlov YI.</u>

Appl Microbiol Biotechnol. 2012 Jan;93(1):331-41.

The complete genome sequence of Pantoea ananatis AJ13355, an organism with great biotechnological potential.

Genetic tools were developed (Katashkina et al, 2009; Andreeva et al, 2011)

Central metabolism perturbations to provide the target biosynthetic pathway with precursors, cofactors, etc


Examples

Desensitization to feedback inhibition: SAT example (I)

Protein Engineering, Design & Selection vol. 19 no. 4 pp. 163-167, 2006

Engineering of Escherichia coli L-serine O-acetyltransferase on the basis of crystal structure: desensitization to feedback inhibition by L-cysteine

Y.Kai¹, T.Kashiwagi¹, K.Ishikawa¹, M.K.Ziyatdinov², E.I.Redkina², M.Y.Kiriukhin², M.M.Gusyatiner², S.Kobayashi³, H.Takagi³ and E.Suzuki^{1,4}

Desensitization to feedback inhibition: SAT example (II)

Table I. Comparison of the mutants activity and sensitivity to L-Cys inhibition

CysE gene on the plasmid	Specific activity, µM/min/mg	IC ₅₀ , μΜ	<i>K</i> _i , μM [*]
CysE wild-type	1680	0.8	0.6
CysE 256	1067	18.0	14.5
CysE 5	715	1100.0	950.0
CysE 12	1440	125.0	114.0
CysE 15	1470	550.0	510.0
CysE 1	1600	460.0	420.0
CysE 142	1220	20.0	15.0
CysE 10	2692	4.7	3.4
CysE 11-2	1900	410.0	395.0
CysE 15-2	1100	6.0	4.5

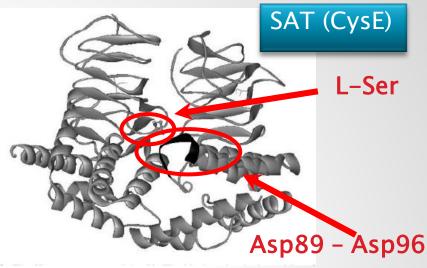
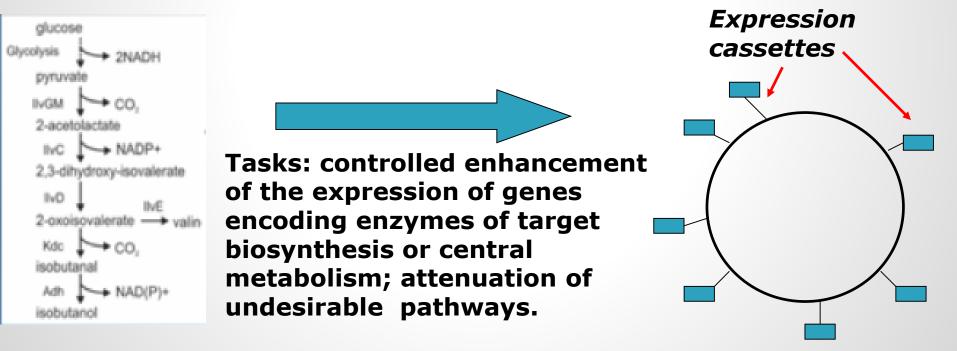


 Table III. Comparison of the catalytic properties with those by the previous studies


Table II. The mutants' sequence*		SAT	Activity versus	Relative activity
Allele of the cysE gene	Randomized sequence of the SAT protein (at positions 89–96)		Escherichia coli wild-type (%)	for 100 μM L-cysteine added (%)
		- Arabidopsis thaliana SAT-m	1.2	100
CysE wild-type CysE5 CysE12	Arg Thr Arg Asp Pro Ala Val Asp Arg Thr Arg Asp Pro Ala <u>Arg Pro</u>	(Takagi <i>et al.</i> , 1999a) pCEM256T (Nakamori <i>et al.</i> , 1998)	50.1	18.6
CysE12 CysE15	Arg Thr Arg Asp Pro Ala <u>Gly Gly</u> Arg Thr Arg Asp Pro Ala <u>Leu Pro</u>	CysE5	42.5	100
CysE1	Pro Thr Arg Asp Pro Ala Val Asp	CysE12	85.7	54.4
CysE142	Ser Leu Arg Asp Pro Ala Val Asp	CysE15 CysE1	87.5 95.2	89.3 87.5
CysE10	Arg Thr Arg Asp Pro Thr Val Asp	CysE142	72.6	31.6
CysE11-2	His Val Arg Asp Ala Thr Val Asp	CysE10	160.2	<10
CysE15-2	Thr Arg Arg Asp Pro Ala Val Asp	CysE11-2	113.1	92.1
0,0010-2	III /IIE /IIE ASP 110 Ala Va Asp	CysE15-2	65.5	<10

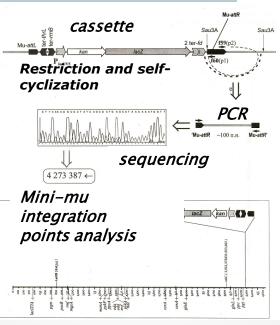
As a result: SATs with high enzymatic activity and extreme insensitivity to inhibition by L-Cys.

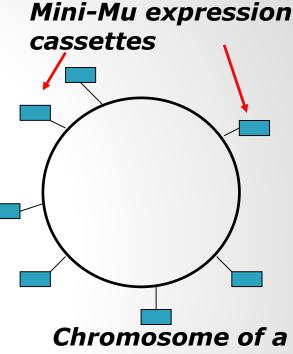
Gene engineering approaches for direct modification of metabolic pathways

Requirements to strains exploited for large-scale fermentation processes nowadays: no plasmids, no antibiotic resistance genes, complete information about all genome modifications should be submitted.

Genetic tools should be developed and/or adapted, accordingly (*E. coli, M. methylotrophus, C. glutamicum, B. subtilis, B. amyloliquefaciens, P. ananatis, etc).*

Chromosome of a producer strain

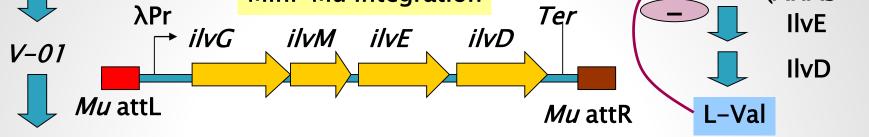

Metabolic pathway


Mini-Mu-based random integration for construction of plasmid-less and marker-less AA-producing strains with completely known chromosomal structure

On the basis of phage-transposon Mu, an effective dual-component integration system for editing of Gramnegative bacteria genomes was developed.

Transposition and integrative modules are separated that allows effective random insertions of desired DNA fragments into a chromosome and their further amplification.

The procedure is followed by CGS or inversed-PCR analysis (Zimenkov et al, 2004) to find out the integration points.

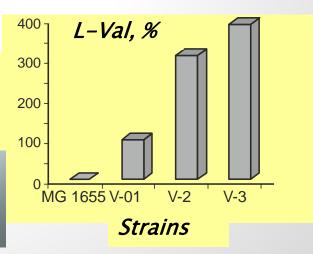


producer strain

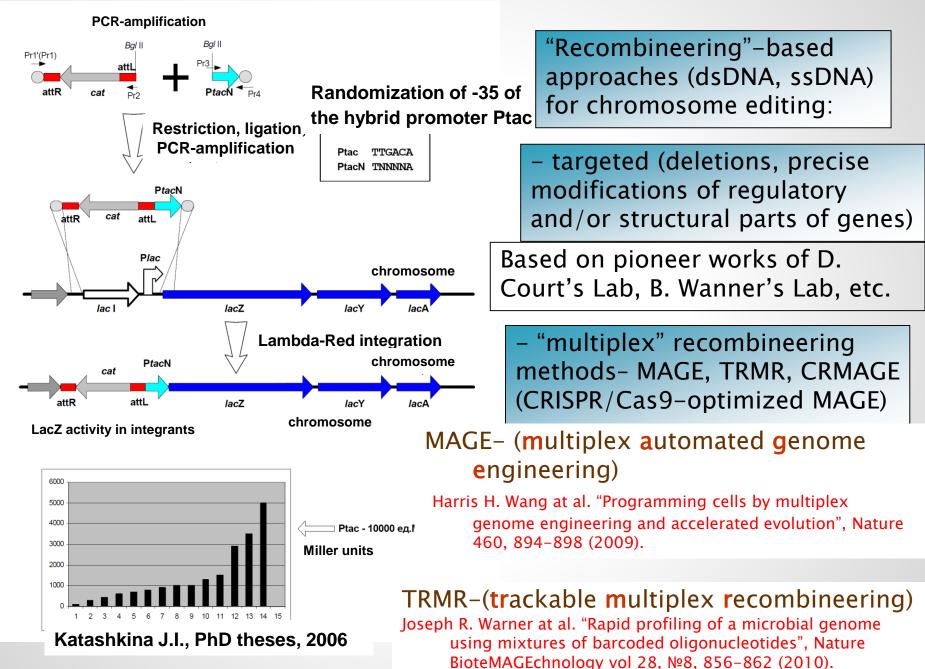
Genome of the final stable plasmid-less multi-integrant may contain transpositionmediated chromosomal rearrangements.

Reviewed in Akhverdyan et al, (2011) Appl Microbiol Biotechnol DOI 10.1007/s00253-011-3416y

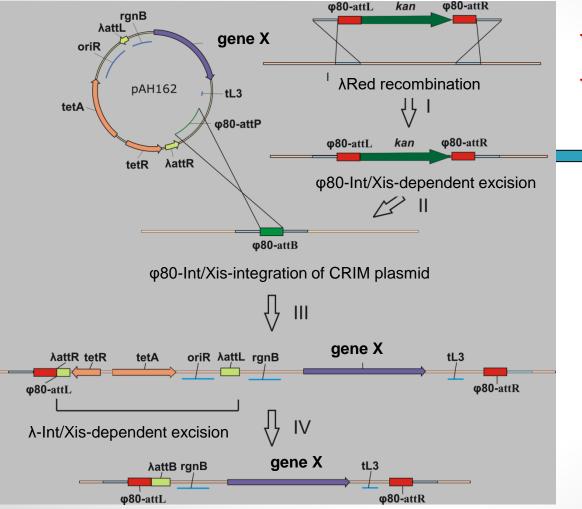
Example: Mini–Mu–based integration for *E. coli* Gluc chromosome editing to produce L-valine *E. coli* K12 AHAS ^{Fbr} Mini–Mu integration


V-2 (4 copies mini-Mu::Pr-ilvGMED)

Mini-Mu amplification

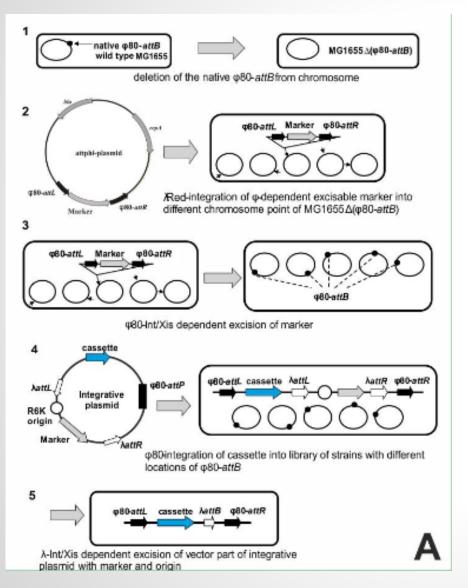

V-3 (7 copies mini-Mu::Pr-ilvGMED)

Dual-component integration system allows to amplify pre-existed mini-Mu cassettes.


Genome of the final stable plasmid-less multiintegrant may contain transposition-mediated chromosomal rearrangements. Step-by-step increasing of Val accumulation level

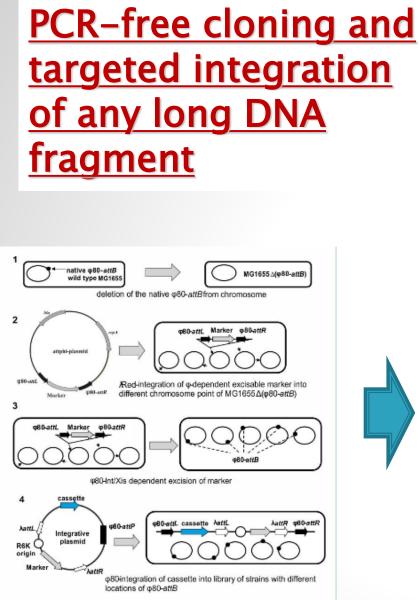
Optimization of genes expression in chromosome

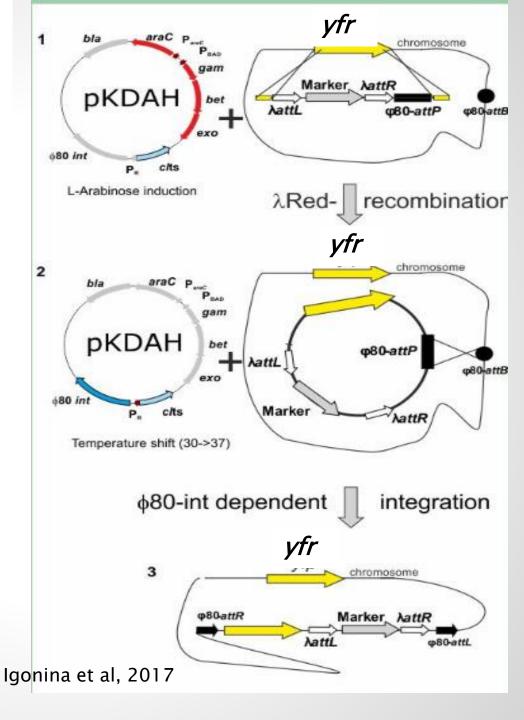
Site-specific chromosomal integration mediated by bacteriophages recombination systems:



<u>Dual-In/Out</u> <u>method</u>

Library of φ 80-attB "integration platforms" for locus-specific insertion of target genes was constructed (more than 20 platforms).


Minaeva et al, BMC Biotechnol, 2008

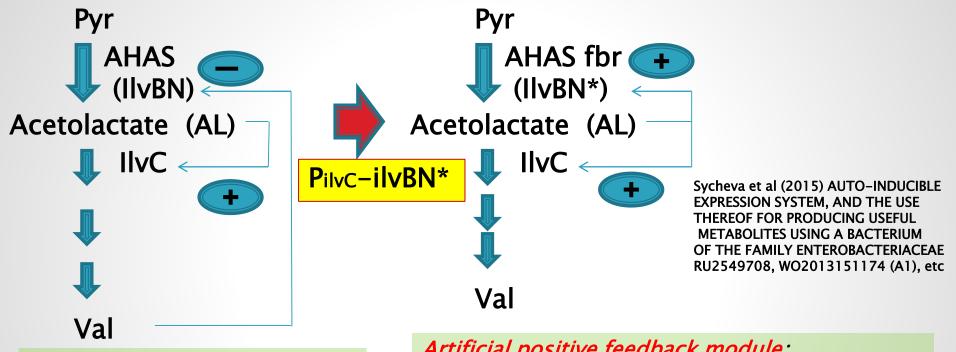

PCR-free cloning and targeted integration of any long DNA fragment

ADP ATP $ADP + P_i \delta$ ATP F. atpIBEFHAGDC No ATP F_{o} ALL USE UCLIVILY fully active selectively inhibited Ublinskaya et al, (2012) Journal of Microbiological Methods, 89, 167-173 in vitro cloning, I-Scel-based further developed in Hook et al, (2016) Journal of Microbiological Methods, 130, 83-91. in vivo cloning

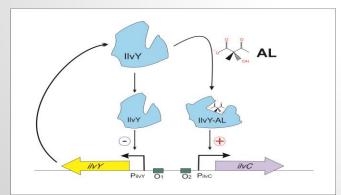
Minaeva et al, BMC Biotechnol, 2008

Minaeva et al, BMC Biotechnol, 2008

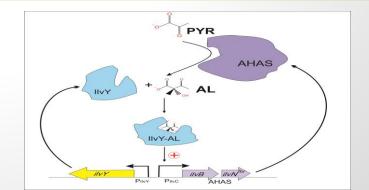
Α


80-attL cassette AattB q80-attF

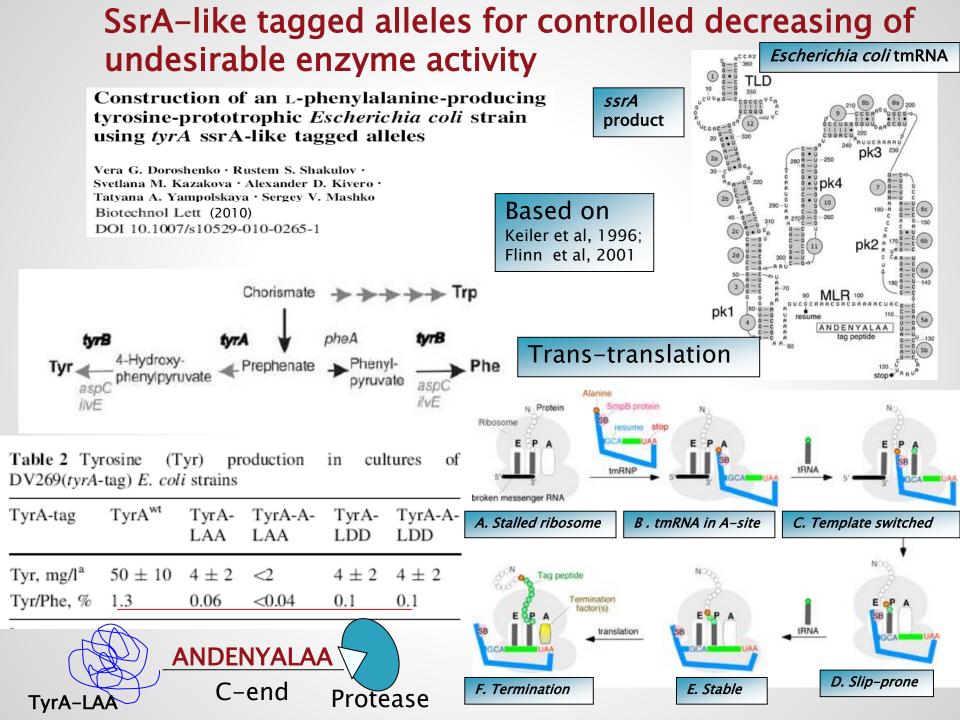
λ-Int/Xis dependent excision of vector part of integrative


plasmid with marker and origin

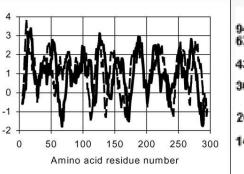
5

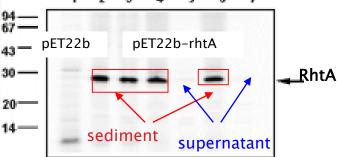

Metabolic regulation: artificial positive feedback loop in branched chain amino acids biosynthesis

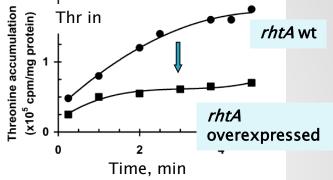
wild-type: negative regulation by final product


Artificial positive feedback module: metabolic intermediate (AL) triggers its own synthesis

Phosphoketolase reaction for Glu production – an example of metabolic grafting


Prof. Yu.I.Kozlov JOURNAL OF BIOSCIENCE AND BIOENGINEERING © 2007, The Society for Biotechnology, Japan Vol. 103, No. 3, 262-269, 2007 1944 - 2007 DOI: 10.1263/jbb.103.262 amino acid Innovative Metabolic Pathway Design for Efficient L-Glutamate Production by Suppressing CO₂ Emission Yield (Y)= Akito Chinen,1 Yuri I. Kozlov,2 Yoshihiko Hara,1 glucose Hiroshi Izui,1 and Hisashi Yasueda1* Fermentation and Biotechnology Laboratories, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki 210-8681, Japan¹ and Ajinomoto Genetika Research Institute, Y_{theor} = 81.7% 1st Dorozhny proezd, 1, Moscow 117545, Russian Federation² Y_{theor} = 98.0% Received 13 October 2006/Accepted 23 December 2006 Glucose (x5) Glucose (x1) A в Acetyl-P (x2) cociety for Biotechno. Fructose 6-P (x1) Fructose 6-P (x5) Japan (x1) Erythrose 4-P (x2) (x2)2008 Excellent Paper Award of The Society for Biotechnology, Japan GAP (x2) GAP (x2) Presented to Xylulose 5-P (x4) Yuri I. Kozlov, Akito Chinen, Yoshihiko Hara, Hiroshi Izui, and Hisashi Yasueda Pvruvate (x1) Pyruvate (x1) GAP (x4): Acetyl-P (x4) For their paper entitled CO2~ PYC PDH $\rightarrow CO_2$ Innovative Metabolic Pathway Design for PTA Efficient L-Glutamate Production Oxaloacetate (x1) Acetyl-CoA (x1) Pyruvate (x6) Acetyl-CoA (x6) by Suppressing CO2 Emission CO₂ PYC Published in (x6) The Journal of Bioscience and Bioengineering, vol. 103, p. 262-269 (2007) 2-Oxoglutarate (x6) Citrate (x1) This paper was selected from all articles published in the volumes of 103 and 104 of the Journal of Bioscience and Bioengineering in 2007, based on its outstanding quality in both presentation and scientific contribution and for its impact on the field of biotechnology. Citrate (x6) August 27, 2008 ICDH ★ CO₂ 2-Oxoglutarate (x1) Hier What CO2 (x6) Suteaki Shioya Hisao Ohtake Editor-in-Chief GDH President 2-Oxoglutarate (x6) L-Glutamate (x1) GDH


L-Glutamate (x6)


3. Search, identification and usage of genes that control amino acids efflux

More than 20 years ago, in GosNIIGenetika, the gene *rhtA* from Escherichia coli was identified that encoded hydrophobic membrane protein responsible for new, previously unknown, function – efflux of amino acid and its precursor from bacterial cell.

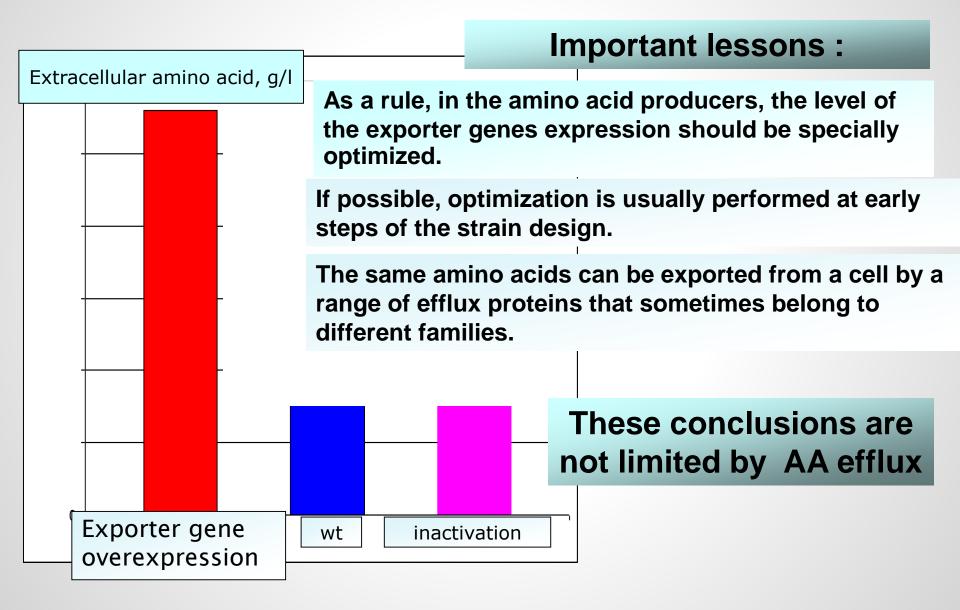
Cellular localization of the RhtA protein (autoradiography)

Hydropathy plot of RhtA (solid line) and YdeD (dashed line)

Influence of overexpression of an exporter gene on intracellular amino acid concentration

From

Phenotype study of strains with altered expression of *rhtA*


To Methodology for search and identification of new genes that control the export of a wide range of intracellular metabolites

Amino acids exporters

Exporter/ gene	Family	Substrates	TMS	Regulation	Reference
Corynebacterium	glutamicum				
LysE/ <i>lysE</i>	LysE	lys, arg	6	Lys G	Vrljic <i>et al</i> ., 1996; Bellmann <i>et al</i> ., 2001
ThrE/ <i>thrE</i>	ThrE	thr, ser	10		Simic <i>et al</i> ., 2001
BrnEF/ <i>brnEF</i>	Liv-E	BCAA, met	4/7	Lrp	Kennerknecht <i>et al</i> ., 2002; Trötschel <i>et al</i> ., 2005
MscS/NCgl1221	MscS	glu, asp	4		Nakamura <i>et al</i> ., 2007
Escherichia coli					
RhtA/ <i>rhtA</i>	DME	thr, hom, lys, pro etc.	10	Stress conditions	Zakataeva <i>et al</i> ., 1997; Livshits <i>et al.,</i> 2003
RhtB/ <i>rhtB</i>	RhtB	thr, hom	6	Stress conditions	Aleshin <i>et al</i> ., 1999; Zakataeva <i>et al</i> ., 1999
RhtC/ <i>rhtC</i>	RhtB	thr	6	Stress conditions	Aleshin <i>et al</i> ., 1999; Zakataeva <i>et al</i> ., 1999
LeuE/ <i>yeaS</i>	RhtB	leu, met, his, ile, etc.	6	Lrp	Livshits et al., 2001; Kutukova <i>et al.,</i> 2005
EamA/ <i>ydeD</i>	DME	OAS, cys, asn, gln	10		Daßler <i>et al.</i> , 2000
EamB/ <i>yfiK</i>	RhtB	OAS, cys, AS, pro, thr	6		Livshits et al., 2001; Franke <i>et al.,</i> 2003
ArgO/ <i>yggA</i>	LysE	arg, lys	6	ArgP	Livshits et al., 2001; Nandineni and Gowrishankar, 2004
YddG/ <i>yddG</i>	DME	phe, tyr, trp	10		Livshits et al., 2003; Doroshenko <i>et al</i> ., 2007
YgaZH/ <i>ygaZH</i>	Liv-E	BCAA, met	5/3	Lrp	Tabolina <i>et al</i> ., 2005; Park <i>et al</i> ., 2007
CydDC/ <i>cydDC</i>	ABC	cys	6/6		Pittman et al., 2002; Cruz-Ramos et al., 2004

- identified and characterized in AGRI

Influence of the expression level of exporter gene on amino acid production by producer strain

Some results:

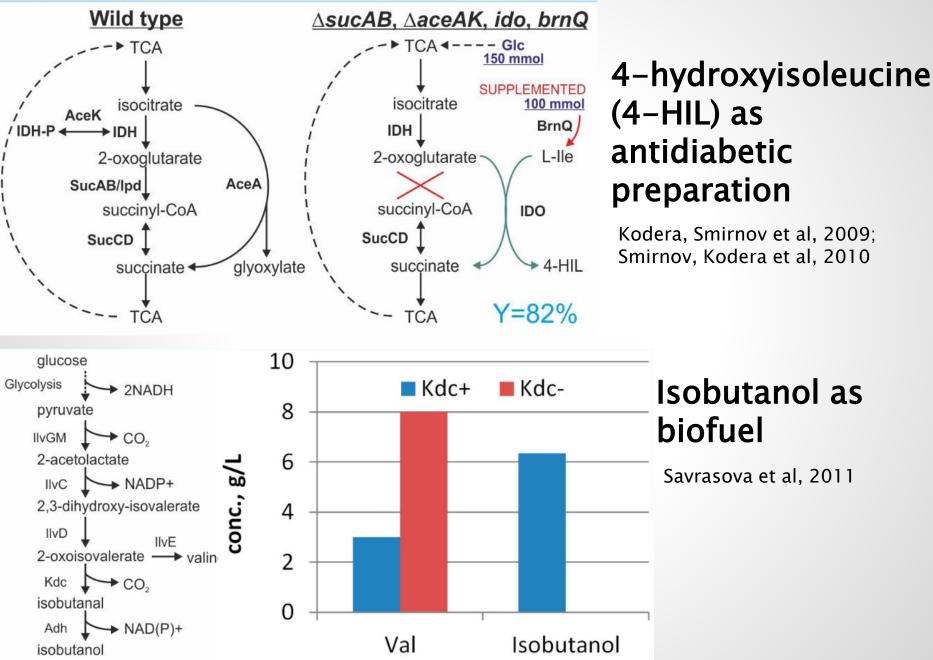
The application of amino acids-producing strains obtained in this work, ensured in 2009 year the industrial production of feed-use amino acids (lysine, threonine, tryptophan) – 400 000 tons (27% of total world production and food-use and pharmaceutical-use amino acids (arginine, leucine, valine, isoleucine, histidine, serine, phenylalanine, etc) – 18 000 tons (44% of total world production).

(from Ajinomoto Co Ink Certificate)

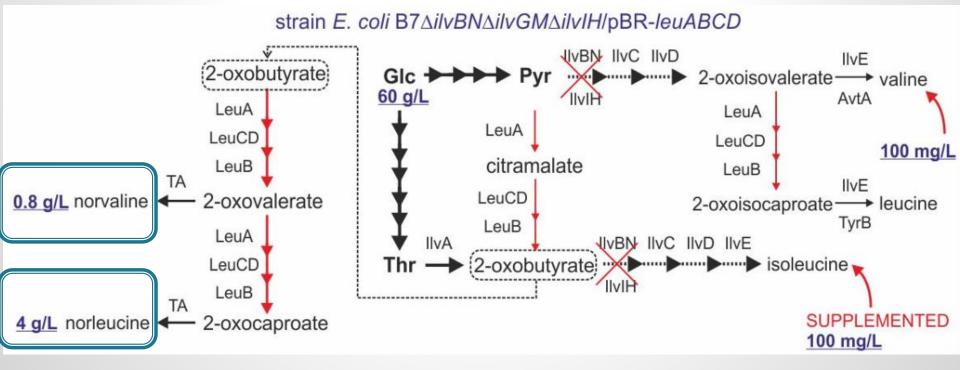
KYOBASHI I.CHOME. CHUO-KU. O 104-8315, JAPAN	AJINOMOT		
o acids production by the . ns based on the ZAO AGRI		roups <u>using Micro</u> n 2009)	
Amino acids	Total Markets	Production by the	
	(t)	Ajinomoto Groups (t)	
Feed-Use Amino Acids			
Lys, Thr, Trp	1,500,000	400,000	
Pharmaceutical-use, food-use			
Amino Acids			
(Arg, Leu, Val, Ile, His,	41,000	18,000	
Ser. Phe_etc.)			

I attest to as mentioned above

AUNOMOTO CO INC


Fat Well Live Well

Riyoshi miwa, Ph.D. Members of the Board & Corporate Senior Vice President


http://www.lysine.com/

Strains producing AA-related compounds

"Underground" metabolism

Over the past years, heighten interest in genetic code engineering allows the creation of different types of proteins with the novel biochemical properties or synthetic organisms that can incorporate noncanonical amino acids (NCAAs) instead of one of 20 proteinogenic canonical amino acids (CAAs) into a protein. A range of NCAAs which are structural analogs of the natural CAAs is known that can substitute CAAs in ribosomal translation process.

Challenges: (i) HT screening approaches (ii) genome editing tools appropriate for HT screening

Pathway-focused approaches

Strategies:

- Carbon source utilization
- · Precursor enrichment
- · Byproduct elimination
- · Degradation blocking
- · Transporter engineering
- · Cofactor engineering

Ma Q. et al, <u>Synth Syst</u> <u>Biotechnol.</u> 2017 Aug 2;2(2):87-96.

Evolutionary approaches

Strategies:

- · Enzyme evolution
- · Metabolic evolution
- · Adaptive evolution

Techniques: • FACS

Biosensor

Systems metabolic engineering

Systems biologybased approaches

Omics-based approaches:

- Genomics
- Transcriptomics
- Proteomics
- Metabolomics
- Fluxomics

In silico simulation

Acknowledgments:

Eat Well, Live Well.

Ajinomoto-Genetika Research Institute, Moscow, Russia

Research Institute for Bioscience Products and Fine Chemicals (Kawasaki, Japan)

Thank you for attention