Федеральное Государственное Унитарное Предприятие «Государственный научно-исследовательский институт генетики и селекции промышленных микроорганизмов»

На правах рукописи

Горянин Игнатий Игоревич

Шапероны Hsp60, Hsp70, Hsp100, Триггер Фактор и протеаза Lon как эффективные модуляторы активности люцифераз и белков LuxR мезофильных и психрофильных морских бактерий

Специальность 03.02.07 - Генетика

Диссертация на соискание ученой степени кандидата биологических наук

Научный руководитель: доктор биологических наук, И.В. Манухов

Москва 2014

Оглавление

Список сокращений и условных обозначений	5
Введение.	6
Актуальность темы исследования.	6
Цели и задачи.	7
Научная новизна.	8
Теоретическая и практическая значимость работы.	9
Методология и методы исследования.	10
Положения, выносимые на защиту.	11
Степень достоверности и апробация результатов.	12
Структура работы	12
Обзор литературы.	13
Глава 1. Молекулярные шапероны.	13
1.1. Введение.	13
1.2. Шапероны семейства Hsp70.	15
1.3. Шапероны семейства Hsp90.	18
1.4. Шапероны семейства Hsp100.	19
1.5. Шапероны семейства Hsp60.	22
1.6. Малые шапероны sHsp (IbpAB).	25
1.7. Триггер Фактор.	26
Глава 2. Участие шаперонов и протеаз в регуляции экспрессии генов	32
<i>lux</i> -оперонов люминесцирующих бактерий.	
2.1. Структура lux-оперонов морских бактерий мезофильных Aliivibrio	32
fischeri и психрофильных Aliivibrio logei.	
2.2. Участие бишаперонной системы DnaKJE-ClpB в рефолдинге	34
термоинактивированных люцифераз (LuxAB).	
2.3. Участие шаперонина GroEL/ES и протеазы Lon в сборке и	37
деградации белка LuxR - активатора транскрипции генов lux-оперона А.	
fischeri.	
Экспериментальная часть.	39

Глава 3. Материалы и методы исследования.	39
3.1. Бактериальные штаммы.	39
3.2. Среды, ферменты, реактивы.	40
3.3. Плазмиды.	41
3.4. Генно-инженерные методы.	46
3.5. Конструирование плазмид.	47
3.6. Измерение экспрессии интенсивности биолюминесценции.	49
3.7. Термоинактивация и рефолдинг люциферазы in vivo.	49
3.8. Выделение и очистка ТФ.	49
3.9. Рефолдинг бактериальной и светлячковой люцифераз in vitro.	50
Результаты и обсуждение.	52
Глава 4. Участие АТФ-зависимых шаперонов и протеаз в экспрессии	52
генов <i>lux</i> -оперонов психрофильных бактерий A. logei и мезофильных	
A. fischeri.	
4.1. Роль шаперонина GroEL/GroES в фолдинге активных форм белков	52
LuxR1 и LuxR2 психрофильных бактерий <i>A. logei</i> .	
4.2. Влияние протеазы Lon на белки LuxR1 и LuxR2 психрофильных	53
бактерий А. logei.	
4.3. Сравнение влияния шаперонина GroEL/GroES и протеазы Lon на	54
фолдинг и поддержание активных форм белка LuxR2 психрофильных	
бактерий A. logei и LuxR мезофильных бактерий A. fischeri.	
4.4. Сравнение термостабильности и способности к рефолдингу	60
люцифераз психрофильных бактерий A. logei и мезофильных бактерий	
A. fischeri.	
Глава 5. Триггер Фактор-зависимый рефолдинг бактериальных	64
люцифераз.	
5.1. Основные характеристики Триггер Фактор-зависимого рефолдинга	64
термоинактивированных люцифераз.	
5.2. Триггер Фактор осуществляет рефолдинг гетеродимерных, но не	69
мономерных люцифераз.	

5.3. Сравнение шаперонной активности Триггер Фактора из	74
мезофильных и психрофильных бактерий.	
5.4. Обсуждение результатов, полученных при изучении Триггер Фактор-	83
зависимого рефолдинга бактериальных люцифераз.	
Заключение.	87
Выводы.	91
Список литературы	93

Список сокращений и условных обозначений

- ДНК дезоксирибонуклеиновая кислота;
- РНК рибонуклеиновая кислота;
- АТФ, АТР аденозинтрифосфат;
- АДФ, АDР аденозиндифосфат;
- FMN флавин мононуклеотид;
- FMNH₂ восстановленный FMN;

Туг – тирозин;

- QS Quorum Sensing;
- АИ аутоиндуктор I ого типа;
- СТD С-терминальный домен;
- NTD N-терминальный домен;
- PPlase пептидил-пролил цис-транс изомераза;
- Linker междоменное соединение;
- ИПТГ изопропил-β-*D*-тиогалактопиранозид;
- ПЦР полимеразная цепная реакция;
- БСА бычий сывороточный альбумин;
- ТФ Триггер Фактор;
- $T\Phi_{Ec}$ Триггер Фактор *E. coli;*
- $T\Phi_{Pf}$ Триггер Фактор *P. frigidicola*.

Введение

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы исследования

За последние годы достигнут значительный прогресс в понимании механизмов работы шаперонов и протеаз, необходимых для преодоления стрессовых воздействий на бактериальную клетку и правильной сборки белков.

В бактериальных клетках в процессе роста образуются неправильно собранные и денатурированные белки, количество которых значительно нарастает при стрессовых ситуациях, а также при суперпродукции гетерологичных белков. Важную роль в преодолении негативных последствий для клетки, возникающих в результате агрегации белков, играют шапероны семейств Hsp60, Hsp70, Hsp100, sHsp и АТФ-зависимые протеазы [1-3]. Сравнительно недавно была обнаружена шаперонная активность Триггер Фактора (Т Φ), кодирующегося геном *tig* в геноме бактерий Escherichia coli. [4]. В настоящее время продолжают оставаться актуальными исследования механизмов проведения шаперонами рефолдинга денатурированных белков, а также роли шаперонов и протеаз в регуляции экспрессии бактериальных генов, в частности, в регуляторных системах скоординированного ответа (Quorum Sensing, QS). В диссертационной работе для исследования механизмов работы шаперонов В качестве систем, восстанавливающих нативную структуру термоинактивированных белков, и определения роли шаперонов и протеаз в модуляции активности QS систем впервые в качестве модели используются белки, кодируемые генами *lux*-оперонов психрофильных бактерий. Проводится сравнение активности и специфичности шаперонов и протеаз при использовании в качестве субстратов термостабильных и термолабильных люцифераз и белков-регуляторов.

Необходимо отметить важную роль шаперонов в организме человека, так как нейродегенеративные болезни: болезни Альцгеймера, Паркинсона, Хантингтона, прионовые болезни – вызываются агрегацией различных групп белков с их конверсией в амилоидоподобные надмолекулярные структуры [5].

6

Цели и задачи

Целью данной работы было определение роли шаперонов и протеаз в регуляции транскрипции QS систем и в фолдинге и рефолдинге термолабильных люцифераз, гены которых входят в состав *lux*-оперонов психрофильных бактерий *Aliivibrio logei* и мезофильных *Aliivibrio fischeri*.

Для достижения данной цели были проведены исследования влияния АТФзависимых шаперонина GroEL/GroES (семейство Hsp60) и протеазы Lon на регуляцию экспрессии генов *lux*-оперонов морских люминесцирующих мезофильных и психрофильных бактерий, исследования участия шаперонов DnaKJE (семейство Hsp70) и ClpB (семейство Hsp100) в фолдинге и рефолдинге термолабильной люциферазы психрофильных бактерий A. logei, а так же исследования рефолдинга, проводимого шапероном TΦ, бактериальных люцифераз, характеризующихся разным уровнем термостабильности. В ходе исследований были поставлены и решены следующие задачи.

- Определение участия шаперонинов GroEL/GroES на фолдинг белков LuxR1 и LuxR2 психрофильных бактерий *A. logei*.
- 2. Определение роли Lon протеазы в процессе деградации белков LuxR1 и LuxR2 психрофильных бактерий *A. logei*.
- 3. Проведение сравнительного анализа влияния шаперонина GroEL/GroES и Lon протеазы на поддержание активных форм белков LuxR1 и LuxR2, регулирующих транскирипцию *lux*-оперонов психрофильных бактерий *A. logei*, и LuxR мезофильных бактерий *A. fischeri*.
- 4. Провести сравнительный анализ термостабильности и способности к рефолдингу люциферазы психрофильных бактерий *A. logei* в сравнении с люциферазой мезофильных бактерий *A. fischeri*, исследовать участие шаперонов в фолдинге и рефолдинге термолабильной люциферазы психрофильных бактерий *A. logei*.
- Определение основных параметров ТФ зависимого рефолдинга термоинактивированных люцифераз. Установление зависимости уровня рефолдинга различных по термостабильности люцифераз от концентрации

ТФ и времени действия. Определение влияния шаперонов семейства Hsp100 на ТФ - зависимый рефолдинг.

- Изучение процесса рефолдинга, проводимого ТФ при использовании в качестве субстратов мономерных и димерных форм люцифераз.
- 7. Проведение сравнительного анализа основных характеристик шаперонной активности ТФ из мезофильных бактерий *E. coli* и психрофильных бактерий *Psychrobacter frigidicola*. Сравнение зависимости уровня рефолдинга термоинактивированных люцифераз от концентрации и от времени действия ТФ.
- 8. Изучение влияния ТФ мезофильных бактерий *E. coli* и психрофильных бактерий *P. frigidicola* на жизнеспособность клеток *E. coli*. Определение характера кривых ренатурации различных по термостабильности термоинактивированных люцифераз, проводимой ТФ из психрофильных бактерий *P. frigidicola*. Изучение рефолдинга мономерных и димерных форм люциферазы, проводимого ТФ из психрофильных бактерий.
- 9. Определение влияния шаперонов семейства Hsp100 на рефолдинг, проводимый ТФ из психрофильных бактерий *P. frigidicola*.

Научная новизна

Впервые показано, что шаперонин GroEL/ES и АТФ-зависимая протеаза Lon участвуют в процессе формирования нативной формы и деградации активаторов транскрипции систем QS LuxR2 психрофильных бактерий *A. logei* и LuxR мезофильных бактерий *A. fischeri*. На активность LuxR1 *A. logei* шаперонин GroEL/ES и протеаза Lon не влияют.

Проведено исследование термостабильности и способности к рефолдингу бактериальной люциферазы *А. logei*, проведено сравнение с люциферазами из мезофильных бактерий.

Были определены основные параметры процесса рефолдинга термоинактивированных люцифераз проводимого шапероном Триггер Фактором из мезофильных бактерий *E. coli* и психрофильных *P. frigidicola in vivo* в клетках *E. coli*. Изучено влияние шаперона ClpB на ТФ - зависимый рефолдинг. Показано,

термостабильные люциферазы характеризуются что сравнительно низким уровнем ТФ - зависимого (как и DnaKJE-зависимого) рефолдинга в отличие от термочувствительных люцифераз, которые восстанавливают активность после термоинактивации значительно полнее. Впервые получены данные о том, что рефолдинг мономерных форм люциферазы не проводится TΦ как ИЗ психрофильных, так и из мезофильных бактерий.

Теоретическая и практическая значимость работы

Гены *lux*-оперонов, обеспечивающих биолюминесценцию морских И наземных светящихся бактерий, в настоящее время находят широкое применение В качестве генов-репортеров в работах по молекулярной генетике, при биохимических анализах, в генно-инженерных работах (селекция) и ряде других. Цельноклеточные биосенсоры, использующие в качестве генов-репортеров гены *luxAB*, кодирующие бактериальные люциферазы, используют в работах по экологическому мониторингу, тестированию токсичных агентов в пищевых продуктах, а также в разработках и тестировании новых медицинских препаратов. Проведенное в диссертационной работе исследование о влиянии шаперонов и протеаз на активность активаторов транскрипции систем QS (белки LuxR, LuxR1 и LuxR2) может быть использовано для увеличения чувствительности luxбиосенсоров.

Практической данных изучению способности значимостью ПО К восстановлению активности после термоинактивации белков, различающихся по диссертационной термостабильности, представленных В работе, является создание разнообразных моделей, что дает возможность выбора наиболее подходящей из них для конкретной задачи изучения механизмов рефолдинга денатурированных белков.

В настоящее время шапероны находят широкое применение в области биотехнологии при конструировании штаммов для суперпродукции гетерологичных белков. Введение в клетку совместно двух плазмид, кодирующих белок-субстрат, и белки-шапероны, позволяет значительно повысить выход растворимых нативных форм белка-субстрата [6-11]. Исследование активности

9

АТФ - независимого шаперона ТФ имеет значение для повышения выхода нативных форм гетерологичных белков при создании продуцентов.

АТФ - зависимые протеазы могут использоваться в качестве ингибиторов систем QS, например, для снижения активности вирулентных генов у патогенных бактерий.

Предполагается провести поиск наиболее активных вариантов ТФ, которые будут использованы для исследования способности ТФ к дезагрегации амилоидоподобных надмолекулярных структур и последующем проведении доклинических испытаний препарата, содержащего шапероны, для терапии нейродегенеративных заболеваний.

Методология и методы исследования

Исследования влияния АТФ - зависимых шаперонина GroEL/GroES и протеазы Lon на регуляцию экспрессии генов *lux*-оперонов морских люминесцирующих мезофильных и психрофильных бактерий *A. fischeri* и *A. logei* проводились методом сравнительного анализа зависимости интенсивности биолюминесценции клеток, содержащих биосенсорную плазмиду с исследуемым активатором транскрипции в штаммах дикого типа и штаммах *E. coli*, мутантных по шаперонину GroELS или протеазе Lon, от концентрации добавленного индуктора и от времени инкубации.

Для сравнительного анализа термостабильности люцифераз из психрофильных бактерий *A. logei* и мезофильных бактерий *A. fischeri* проводилось измерение зависимости уровня биолюминесценции от времени термоинактивации в клетках *E. coli*, содержащих делецию *ДdnaKJ*. Сравнение способности к рефолдингу люцифераз проводилось *in vivo* в клетках дикого типа в результате измерения уровня рефолдинга в зависимости от времени инкубации.

Исследования рефолдинга термоинактивированных люцифераз, проводимого ТФ как из мезофильных бактерий *E. coli* так и из психрофильных бактерий *P. frigidicola*, проводились *in vivo* в штамме *E. coli*, содержащем делецию *AdnaKJ* при экспрессии генов ТФ с введенной в клетки плазмиды. В клетки вводилась также вторая плазмида, обеспечивающая экспрессию генов одной из

10

бактериальных люцифераз. Концентрацию ТФ в клетки регулировали добавлением индуктора, специфического для данного промотора, под контролем которого находятся гены мезофильного или психрофильного ТФ.

В исследованиях DnaKJE - зависимого рефолдинга использовались либо штаммы *E. coli* дикого типа с проведением предварительного «теплового шока» (для увеличения количества белков системы шаперонов DnaKJE-ClpB), либо штамм, содержащий делеции по генам *dnaK* и *dnaJ*, с введением плазмиды, обеспечивающей продукцию белков DnaKJE.

Данные о влиянии шаперона семейства Hsp100 на Т Φ - зависимый рефолдинг получены в результате сравнения зависимости максимального уровня рефолдинга от времени в клетках *E. coli* дикого типа и мутантных по гену *clp*B. Необходимо подчеркнуть, что в этих экспериментах «тепловой шок» для увеличения количества белков системы шаперонов DnaKJE-ClpB не проводился.

В опытах по изучению роли ТФ в рефолдинге термоинактивированных белков *in vitro* использовалась двухкомпонентная система (R+L), содержащая очищенную люциферазу *Photobacterium leiognathi*.

Изучение влияние ТФ из мезофильных бактерий *E. coli* и психрофильных бактерий *P. frigidicola* на жизнеспособность клеток *E. coli* проводилось согласно размножению клеток *E. coli* штамма, содержащего делецию $\Delta dnaKJ$, при экспрессии гена *tig*, расположенного под контролем арабинозного промотора (*araBAD*), различными концентрациями L-арабинозы.

Положения, выносимые на защиту

- Шаперонин GroELS и протеаза Lon участвуют в процессах контроля нативных форм (формирования и деградации) белка LuxR2 из психрофильных бактерий *A. logei* и белка LuxR из мезофильных бактерий *A. fischeri*, и не участвует в модуляции активности белка LuxR1 *A. logei*.
- 2. Люцифераза из психрофильной бактерии *A. logei* характеризуется равной термостабильностью, но сниженным уровнем DnaKJE-зависимого рефолдинга по сравнению с люциферазой мезофильных бактерий *A. fischeri*.

- 3. Рефолдинг термоинактивированных люцифераз, проводимый шаперонами ТФ мезофильных бактерий *E. coli* ($T\Phi_{Ec}$) и психрофильных бактерий *P. frigidicola* $(T\Phi_{Pf})$ примерно совпадает по скорости, уровню, эффекту повышения уровня в отсутствии ClpB, эффекту эффективности шаперона снижения при увеличении термостабильности используемой качестве субстрата В неспособности люциферазы И использования качестве субстрата В мономерных форм люцифераз, что значительно отличает его от DnaKJE рефолдинга.
- Повышение концентрации ТФ_{Ec} в мутантном штамме E.coli ∆dnaKJ приводит к снижению жизнеспособности и спаду уровня рефолдинга термоинактивированных люцифераз, однако с повышением концентрации ТФ_{Pf} максимальный уровень рефолдинга увеличивается и достигает плато.

Степень достоверности и апробация результатов

Материалы исследования по теме диссертации опубликованы в трех статьях и представлены на V и VI съездах Вавиловского общества генетиков и селекционеров в 2009 и 2014 г., соответственно. Диссертационная работа была апробирована на семинаре секции «Генетика микроорганизмов» Ученого Совета ФГУП «ГосНИИгенетика» 16 марта 2014 г.

Структура работы

Диссертация изложена на 110 листах машинописного текста, включая 40 рисунков и 2 таблицы. Работа состоит из Введения, Обзора литературы, Экспериментальной части, включающей описание Материалов и Методов, изложения и обсуждения результатов, Заключения, Выводов и Списка цитируемой литературы (159 наименований).

Обзор литературы

Глава 1. Молекулярные шапероны.

1.1.Введение.

Проведенные в 1960-ые годы К. Аифинсеном и сотрудниками успешные опыты по ренатурации белков *in vitro* на панкреатической рибонуклеазе и лизоциме, а затем и на других объектах привели к формулированию одного из важнейших, фундаментальных принципов молекулярной биологии («прицип Анфинсена»): последовательность аминокислотных остатков в полипептидной цепи несет в себе всю информацию, необходимую и достаточную для формирования однозначной пространственной структуры, с характерной термодинамически наиболее стабильной и биологически активной конформацией.

Однако ренатурация белков *in vitro* проходит медленно (несколько часов), в то время как *in vivo* сборка нативной структуры (фолдинг) осуществляется очень быстро (менее минуты).

Вполне естественно, что эксперименты с белками К. Анфинсена и сотр., а также других исследователей проводились в стандартных условиях, принятых у биохимиков, то есть при низкой концентрации белка, низкой температуре и определенных значениях рН и ионной силы, иными словами, в нефизиологических условиях [12].

В про- и эукариотических клетках возникают значительные трудности, препятствующие выполнению «принципа Анфинсена» в чистом виде.

Во-первых, высокая концентрация синтезируемых одновременно белков, в результате чего полипептидные цепи, не успевающие принять компактную нативную форму, взаимодействуют друг с другом.

Во-вторых, белки относятся к группе макромолекул, структура которых сравнительно нестабильна и легко подвержена воздействию внешних факторов, в результате в клетке образуются частично денатурированные полипептиды. Особенно подвержены стрессовым воздействиям бактерии, а также дрожжи, грибы и растения. Концентрация белков в цитоплазме составляет примерно 350

мг/мл, иначе говоря является достаточной для возникновения спонтанных ассоциатов между синтезируемыми белками *de novo* или стресс-индуцируемыми частично денатурированными полипептидами, которые формируют межмолекулярные комплексы, приводящие в конечном итоге к агрегатам. [13, 14].

Три линии защиты, выстраиваемые клеткой для ликвидация последствий внешних или внутренних стрессов, вызывающих повреждения белков: 1) использование батареи шаперонов, способствующих правильной сборке и репарации белков, 2) элиминация неправильно собранных или денатурированных белков с помощью протеаз, убикитин-протеасом и лизосом, 3) корректировка белкового синтеза, а также процессов фолдинга и деградации [5, 15-19].

Молекулярные шапероны составляют в клетке основную линию защиты против агрегации и стресс-индуцируемых частично денатурированных белковых структур. Они участвуют в процессах правильной сборки синтезирующихся полипептидных цепей до и после трансляции (фолдинг), процессах восстановления нативной структуры частично денатурированных белков (рефолдинг), процессах дезагрегации образующихся в клетке при стрессе белковых конгломератов, а также процессах транслокации белков через мембраны и т.д. [2-3, 16, 20-26]

Большинство шаперонов относятся к группе белков «теплового шока» («heat shock proteins»), то есть белки, синтез которых нарастает при «тепловом шоке». Поэтому впервые идентифицировав их, часто называют – HSPs [9].

В отличие от ферментов, взаимодействующих со строго ограниченными белками-субстратами, спектр субстратов у шаперонов очень широкий, а механизм действия состоит в «распутывании» (в особенности это справедливо для шаперонов Hsp60, Hsp70, Hsp100) полипептидной цепи неправильно собранного белка, проводимого путем перемещения доменов размером 20-30 кДа на расстояния порядка 20-50 ангстрем и их вращением примерно на 100 градусов.

Все группы шаперонов способны различать нативные и неправильно собранные белки и формировать комплексы с белками, содержащими открытые гидрофобные участки. Часть шаперонов (holdases) способны лишь пассивно

образовывать комплексы с неправильно собранными белками и удерживать их в таком положении, защищая тем самым от агрегации. Другая часть шаперонов (unfoldases) активно способствует разрушению агрегата и рефолдингу белковой макромолекулы или переводу в состояние, деградируемое протеазой.

Пять основных семейств с характерными консервативными аминокислотными последовательностями описаны в настоящее время: Hsp100 (ClpB), Hsp90 (HtpG), Hsp70 (DnaK), Hsp60 (GroEL), sHsp (IbpAB) (ортологи в *E. coli* – в скобках). Все группы шаперонов – АТФ-зависимые, за исключением АТФ-независимых малых шаперонов sHsp [17].

Особое место в ряду шаперонов занимает АТФ-независимый Триггер Фактор (ТФ), который формирует тесный комплекс с рибосомой и участвует в первичной сборке (фолдинг) практически всех синтезируемых белков [27-28]

1.2 Шапероны семейства Hsp70.

Основная группа шаперонов, принимающая непосредственной участие в процессах фолдинга и рефолдинга белков – это Hsp70 (мол. масса 70 кДа). В клетках *Escherichia coli* – это шаперон DnaK [29]. Шапероны группы Hsp70 высоко консервативны во всех организмах от бактерий до человека и характеризуются способностью поддерживать белок-субстрат в растянутой конформации и формировать комплекс с ним через ван-дер-ваальсовое взаимодействие с гидрофобными участками в полипептидной цепи субстрата. С энергетической точки зрения действие шаперона Hsp70 состоит в совершении работы против барьера свободной энергии за счет гидролиза АТФ, в результате которой стабильная денатурированная форма белка-субстрата с низкой свободной энергией превращается в результате раскручивания полипептидной цепи (активность шаперона – «unfoldase») в «открытый» конформер с высокой свободной энергией, который затем может спонтанно перейти в состояние нативного конформера с низкой свободной энергией [30]. Отметим, что в E. coli шаперон DnaK, комплексируясь с транскрипционным фактором «теплового шока» σ^{32} , способствует его протеолитической (осуществляемой протеазой FtsH) деградации [31]. Полипептид DnaK содержит 638 аминокислотных остатков и

состоит из двух доменов: N-терминальный нуклеотид - связывающий домен с характерной АТФазной активностью (NBD), и С-терминальный субстратсвязывающий домен (SBD). Домены соединяются высоко консервативным линкером (аа 381-397), содержащим гидрофобный сегмент ₃₈₈DVLLLD₃₉₃. Сдомен заканчивается небольшим консервативным сегментом ₆₂₄DDVVDAEFEEVKDKK₆₃₈, с которым контактирует молекула денатурированного субстрата [32].

В активный комплекс с Hsp70 входят белки-ко-шапероны Hsp40 и Hsp10. Ко-шаперон Hsp40 (мол. масса 40 кДа, в *E. coli* – DnaJ) содержит консервативный J домен (70 аминокислотных остатков), который определяет контакт с Hsp70, способствуя эффективным процессам фолдинга и рефолдинга, а также регулируя активность Hsp70 Кроме того, DnaJ содержит G/F-богатый фрагмент, цинксвязывающий домен и С-терминальный домен, участвующий в контакте с субстратом [33]. Третий белок - Hsp10, необходимый для проявления шаперонной активности комплекса Hsp70-Hsp40 (DnaK-DnaJ), в *E. coli*, – GrpE – «nucleotide exchange factor» (мол. масса – 10 кДа). GrpE способствует быстрому обмену АТФ – АДФ, ускоряя освобождение комплекса от АДФ [17, 34]. Кратко данную систему шаперонов в *E. coli* обычно обозначают как DnaKJE.

Гены, кодирующие систему DnaKJE, расположены в одном опероне, но количественно в результате трансляции белки в клетке образуются в соотношении 10 (DnaK): 1 (DnaJ): 3 (GrpE). В таком же соотношении эти белки используются в опытах *in vitro*. В качестве белков-субстратов используются малат-дегидрогеназа (MDH), глутамин синтетаза (GS), а также светлячковая люцифераза. В 1999 г. в качестве субстрата впервые были использованы бактериальные люциферазы [35]. В последствие, бактериальные люциферазы как субстраты для изучения действия системы Hsp70-Hsp40 с различными факторами – гомологами GrpE были использованы в работах группы Bukau B. [36].

В основе механизма действия системы DnaKJE (связь с субстратом, рефолдинг и высвобождение нативного субстрата) лежит аллостерическое взаимодействие N-терминального АТФазного домена с С-терминальным субстрат-связывающим доменом [37]. В течение шаперонного цикла комплекса DnaKJE C-домен DnaK меняет конформацию («закрытая» – «открытая» конформации) в зависимости от связи с нуклеотидом. Комплекс АТФ-DnaK («открытая» конформация) характеризуется низкой аффинностью и быстрой скоростью обмена с субстратом, в то время как комплекс АДФ-DnaK («закрытая» конформация) характеризуется высокой аффинностью и низкой скоростью обмена. Ко-шаперон DnaJ при комплексе с DnaK стимулирует АТФ-гидролиз и связь с субстратом. В полипептиде DnaJ имеется т.н. J-домен из 70 а.о., необходимый для контакта с DnaK. Кроме того, DnaJ содержит G/F-богатый фрагмент, цинк-связывающий домен и C-терминальный домен, участвующий в контакте с субстратом. Помимо DnaJ в клетках Е. coli содержатся два его гомолога, также взаимодействующие с DnaK, – CbpA и связанный с мембраной DjlA.

Ко-шаперон GrpE необходим для диссоциации АДФ и для усиления связи с АТФ, в результате происходит высвобождение ренатурированного субстрата из комплекса и завершается цикл действия шаперонной системы [38-39].

Рис 1. Модель механизма действия шаперонов Hsp70 при ремоделировании субстрата [18]. 1 – Hsp70(DnaK в *E.coli*), связывающий АТФ, слабо взаимодействует с неправильно свернутым субстратом. 2 – ко-шаперон Hsp40 (DnaJ, содержащий J-домен) стимулирует Hsp70 к гидролизу АТФ, что запускает конформационные изменения и стабилизирует связывание субстрата. 3 – Hsp10 (GrpE, «Nucleotide Exchange Factor») стимулирует нуклеотидный обмен Hsp70;

Нѕр70 возвращается в АТФ связанную конформацию, обладающую низкой связывающей активностью. 4 – Высвобожденный субстрат либо рефолдирует в

нативную конформацию либо 5 – опять связывается с Hsp70 и цикл ремоделирования повторяется.

1.3. Шапероны семейства Нѕр90.

АТФ-зависимые шапероны этой группы имеют широкое распространение, но механизмы действия этих белков остаются до конца невыясненными [40-41]. В отличие от Hsp70 шапероны Hsp90 значительно более специфичны в выборе субстратов: в эукариотической клетке Hsp90, структурно очень подвижный, участвует в формировании нативной структуры и активации примерно 200 белков, взаимодействуя, например, с рецепторами стероидных гормонов, способствуя их созреванию и стабилизации, с протеинкиназами, с онкогенными белками, в том числе раковым супрессором p53 [5]. Подобно другим белкамшаперонам «теплового шока» Hsp90 способен формировать комплекс с ненативными полипептидами и защищать их от агрегации. В бактериях E. coli этой группе принадлежит шаперон HptG. В цианобактериях HptG определяет термотолерантность клеток. В клетках E. coli делеция гена, кодирующего этот шаперон, не носит летальный характер. Шаперон HptG, как недавно было показано, физически взаимодействует с DnaK, усиливая АТФ гидролиз и способствуя в опытах *in vitro* повышению эффективности рефолдинга термоинактивированных белков-субстратов – глюкоза-6-фосфат-дегидрогеназы и светлячковой люциферазы [42-44]. При добавлениии в систему in vitro специфического ингибитора АТФазной активности шаперона HptG гельданамицина (geldanamycin) эффект усиления рефолдинга снимается. Интересно, что в системе DnaK-DnaJ-GrpE замена DnaJ на гомолог СbpA приводит к потере способности рефолдировать терминактивированные белки. Однако, если к системе DnaK-CbpA-GrpE добавить HptG, шаперонная активность системы восстанавливается.

Пространственная структура Hsp90 – димер, в котором контактируют вытянутые «палочко-подобные» мономеры, причем в комплексе с АТФ контакты мономеров увеличиваются и белок представляется в свернутой компактной форме. В комплексе с АДФ белок, напротив, «открыт», т. к. мономеры контактируют лишь в области С-терминального домена [45].

В клетках эукариот специфические ингибиторы АТФазной активности шаперона Hsp90, как гельданамицин, оказывают значительный биологический эффект и используются в качестве антираковых препаратов [5].

1.4. Шапероны семейства Hsp100.

ААА+ шапероны семейства Hsp100 при прямом контакте с шаперонами группы Hsp70 - Hsp40 участвуют в процессах дезагрегации и рефолдинга белковых агрегатов в бактериях, грибах, растениях [16]. В бактериальной клетке в процессах рефолдинга и дезагрегации белковых агрегатов в бактериальной клетке совместно с шапероном DnaKJE принимает участие шаперон ClpB, принадлежащий семейству Hsp100 (мол. масса субъединицы около 100 кДа). Однако ClpB не участвует непосредственно в рефолдинге субстрата, он лишь способствует дезагрегации белков, особенно эта помощь эффективна при дезагрегации крупных агрегатов, которые система DnaKJE самостоятельно не способна разрушить [46-49]. Делеционные мутанты $\Delta dnaK$ -dnaJ-grpE, а также $\Delta clpB$ не растут при температуре «теплового шока» (42°C и выше).

Субъединица ClpB состоит из N-терминального домена и двух АТФсвязывающих доменов (ААА-1 и ААА-2 домены). Необходимо отметить, что несмотря на значительные различия в функциях у белков ААА+ - суперсемейства имеется ряд важных общих черт: олигомерная структура, консервативный нуклеотид-связывающий Уолкер (Walker)-домен и способность использовать энергию АТФ-гидролиза для модификации своих субстратов [50-51].

Субъединицы ClpB формируют надмолекулярную структуру состоящую из двух колец (каждое кольцо содержит 7 субъединиц) с «порой» (16 ангстрем в диаметре) в центре. При связывании с АТФ верхнее кольцо конформационно изменяется, нижнее кольцо остается без изменений [52-53]. Непосредственно участвует в процессе дезагрегации средний участок ААА-1 домена, образованный из четырех альфа-спиралей (назван М (middle) -доменом субъединицы ClpB. Подвижность М-домена играет важную роль в его способности участвовать в процессе дезагрегации.

Механизм дезагрегации начинается с формирования комплекса DnaKJ с белковым агрегатом, при этом агрегированный полипептид защищается от протеолиза, с последующем переносе агрегата в пору тороидной структуры ClpB. В результате в клетке происходит преимущественно рефолдинг белка, т. е. восстановление нативной структуры субстрата, но не его протеолиз, и этот процесс более выгоден клетке.

В бактериальных клетках, помимо ClpB, присутствует его гомолог (примерно 40% идентичных аминокислотных остатков) шаперон ClpA, однако, М-домен у него, а также у других ортологов ClpB отсутствует. Ген *clpA*, в отличие от гена *clpB*, не относится к группе генов, индуцируемых при «тепловом шоке». Сам же белок ClpA входит в состав АТФ-зависимой протеазы ClpAP, в которой ClpP – пептидаза проводит деградацию белка-субстрата, а ClpA определяет специфичность действия протеазы, т. е. связывается с белком-субстратом и выполняет функцию «анфольдазы» («unfoldase»), т.е. АТФ - зависимого белка, разворачивающего субстрат для его передачи через специальный канал в протеолитическую камеру субъединицы ClpP [54-60]. В работе [61] было показано, что присутствие белка ClpA в смеси с ферментом *in vitro* в момент термоинактивации позволяет проводить эффективный рефолдинг этого фермента при последующем добавлении к смеси шаперонов DnaKJE. Авторы предположили, что ClpA защищает фермент от агрегации. В работе [62] с помощью метода светорассеяния *in vitro* на модели термоинактивированных ферментов MDH и светлячковой люциферазы было продемонстрировано, что шаперон ClpA активно участвует в АТФ - зависимой дезагрегации агрегированных форм белков. Однако, относительно участия ClpA in vivo в дезагрегации и рефолдинге денатурированных белков в клетках E. coli экспериментальные данные отсутствуют.

Рис 2. Дезагрегация белков Hsp100-Hsp70 бишапероной системой [16].

На рис. 2 представлена модель взаимодействия системы белков теплового шока Hsp70 с белковым агрегатом. Первоначальное связывание Hsp70–Hsp40 имеет две функции. Первая – закрывает доступ AAA+ протеазам к агрегатам, вторая – позволяет перенести сувстрат к Hsp100 (ClpB) дезагрегазе. Такой перенос может требовать физического взаимодействия между коопрериующими шаперонами или быть основан на Hsp70–Hsp40-зависимой экспозиции сайтов связывания Hsp100 в агрегате. Hsp100-зависимая дезагрегация регулируется проталкивающей активностью. С белком-субстатом контактируют консервативные ароматические остатки (Tyr), которые расположены на мобильных петлях центральной поры. Считается, что связывание и гидролиз ATФ вызывает конформационные изменения петлевых сегментов, создавая движущую силу, ведущую транслокацию сегментов субстрата через гексамер Hsp100.

Рис 3. Модель механизма дезагрегации белков проводимая при сопряжении ClpB и DnaK систем. [22]

1.5. Шапероны семейства Нѕр60.

Шаперонины GroEL/GroES (или сокращенно GroELS, 57 и 10 кДа соответственно) составляют особую группу шаперонов в бактериях E. coli, так как непосредственно участвуют в процессе фолдинга примерно 15% всех синтезируемых белков в клетке. В отличие от бишаперонной системы DnaKJE-ClpB, делеционные мутанты $\Delta groEL$ не растут при любой температуре, поэтому в работах обычно используюся missens-мутанты groEL. Впервые белки GroELS были идентифицированы в группе С. Р. Georgopoulas как белки, необходимые для размножения бактериофага λ в *E. coli* [63-64]. В 1989 г. была доказана шаперонная функция GroEL: GroEL in vitro защищал от агрегации денатурированную мочевиной рибулозо-бифосфат карбоксилазу (RuBisCO) (функция - «holdase», или «holding» шаперон), а при добавлении к комплексу белка GroES и AT Φ высвобождал в раствор нативную форму этого белка [65]. В дальнейшем было обнаружено, что система GroEL/GroES защищает от агрегации и непосредственно помогает проводить правильную сборку (фолдинг) многих вновь синтезируемых на рибосомах белков бактериальной клетки [66-67]. Шаперонин GroEL представляет собой сложную двух-камерную тороидальную, или бочко-подобную структуру, состоящую из двух колец, каждое из которых содержит шесть субъединиц (по 57 кДа), упакованных бок-о-бок. Ко-шаперонин GroES состоит из шести плотно упакованных субъединиц (по 10 кДа) и служит крышкой, которая закрывает – открывает верхнее и нижнее отверстие центрального канала тороида.

Рис. 4. Конформации GroEL и комплексы с субстратом [5]. а – общий вид апофермента (без лиганда) GroEL и комплекса GroEL–GroES; b – конформации принимаемые GroEL субъединицой в апо форме и GroES-связанной форме; с – схематичное изображение комплексов с собирающимся белком; d – структура GroEL в разрезе (крио-электронная микроскопия) в комплексе с белком капсида бактериофага gp23.

На рис.5 представлен рабочий цикл шаперонина GroEL\GroES.

Рис. 5. Рефолдинг белкового субстрата шаперониновой системой *E. coli* [26]. GroEL–GroES-комплекс показан в разрезе, вид сбоку; различие конформационных состояний АТР-и ADP-содержащих форм GroEL показано серым цветом; по данным работ. Шаперонин GroEL: Ap, In и Eq – апикальный, промежуточный и экваториальный домены; GroES – кошаперонин; NP –

рефолдированный белок-мишень.

Развернутая полипептидная цепь вновь синтезируемого белка, взаимодействуя с гидрофобными участками в стенках «колодца», образованных субъединицами GroEL, которые поочередно открываются или закрываются, получая для этого энергию гидролиза АТФ, в ряде последовательных элементарных актов формирует правильно собранную нативную структуру [68-71]. При этом «колодец» («Anfinsen cage») шаперонина GroEL, ограничивая полипептид от внешней среды, защищает его от агрегации. В заключение кошаперон GroES диссоциирует, и белок-субстрат или выходит из «колодца» в цитоплазму, или остается внутри и начинает новый цикл фолдинга [72-74]. Функциональная активность шаперонина GroEL/ES ограничена молекулярными массами субстратов примерно от 20 до 60 kDa. Отметим, что транскрипция генов *groEL-groES* осуществляется с двух промоторов – конститутивного (σ^{70} – зависимого) и индуцируемого тепловым шоком (σ^{32} –зависимого).

1.6. Малые шапероны sHSP (IbpAB).

Малые белки-шапероны sHsp (13 – 43 kDa) широко распространены среди живых организмов от бактерий до человека [75]. В бактериях *E. coli* малые белкишапероны lbpA и lbpB (14 и 16 кДа, соответственно), принадлежат семейству АТФ-независимых шаперонов («holding» шапероны) и впервые были обнаружены в «телах включения» [76]. Гены *ibpAB* формируют оперон с промотором, «узнаваемым» субъединицей РНК-полимеразы σ³², транскрипция которого индуцируется при «тепловом шоке».

Белки IbpA и IbpB, как и все малые шапероны sHsp, состоят из центральной области, высоко гомологичной α-кристаллинам позвоночных (на рис. 6 отмечена курсивом), фланкированной N- и C-терминальными последовательностями [77]. Белки IbpA и IbpB, как и α-кристаллины, *in vitro* эффективно расщепляются протеазой Lon [78].

IbpAMRNFDLSPLYRSAIGFDRLFNHLENN*QSQSNGGYPPYNVELVDENHYRIAIAVAGFAESIbpB-----M-QW----K-A-A-Q-AGE---***F---I-KS-D----TL-L---RQEIbpAELEITAQDNLLVVKGAHADEQKERTYLYQGIAERNFERKFQLAENIHVRGANLVNGLLYIIbpBD---QLEGTR-S---TPEQPKE-KKW-H--LMNQP-SLS-T---ME-S-TF---H-IbpADLERVIPEAKKPRRIEIN137137IbpB--I-NE--PIAAQ--A-SERPALNS142

Рис.6. Аминокислотное выравнивание белковых последовательностей IbpA и IbpB

[77].

Как показано в ряде работ, IbpA и IbpB образуют комплексы с белковыми агрегатами, что приводит к ускорению процесса дезагрегации, причем, в процессе рефолдинга, как такового, шапероны IbpAB не участвуют [79-82]. Согласно данным, полученным в опытах *in vitro*, наличие IbpAB в смеси с белкомсубстратом защищает белки от термоденатурации, снижая уровень агрегации, что фиксируется методом светорассеяния [81]. Несмотря на высокую степень гомологии (48% идентичных аминокислотных остатков) эти белки значительно различаются по функциональной активности. Так, в работе [83] было показано, что *in vitro* белок IbpA, вносимый в систему с шаперонами DnaKJE-ClpB в отсутствие IbpB, не только способствует рефолдингу агрегировапных белков, но даже в определенной степени ингибирует активность бишаперонной системы. При совместном внесении в смесь белков IbpA и IbpB ингибиторный эффект IbpA снимается. При таких же условиях эксперимента добавление в систему лишь белка IbpB стимулирует эффективность действия бишаперонной системы и защищает белки-субстраты от агрегации [81, 84-86].

В работе [87] показано, что *in vivo* уровень и скорость DnaKJE-зависимого рефолдинга термоинактивированных люцифераз снижены в штаммах с мутациями *ibpA::kan* и *ibpB::kan*, причем эти эффекты наиболее ярко проявляются в отсутствие шаперона IbpB.

Предполагается, что в клетках *E. coli* совместное кооперативное действие малых шаперонов IbpA и IbpB (с ведущей ролью белка IbpB) значительно способствует процессам дезагрегации денатурированных в процессе «теплового шока» белков.

1.7. Триггер Фактор.

Триггер Фактор (ТФ) – первый шаперон, взаимодействующий с вновь синтезируемой полипептидной цепью в момент ее выхода из рибосомы в цитоплазму. ТФ – трехдоменный белок, молекулярная масса 48 кДа, пространственная структура имеет необычную форму, напоминающую «морского конька», или «дракона» (рис. ТФ) [88]

Рис 7. Триггер фактор.[89].

N – терминальный домен определяет контакт ТФ с рибосомой. Средний домен обладает ферментативной активностью (пептидил-пролил цис-транс

изомераза, «PPlase»), однако в структуре ТФ этот домен формирует «головку» белка. С - концевой домен, напротив, расположен в центральной части белковой макромолекулы, образуя внутреннее «плечо». Пространство между N- и Сдоменами заполняется синтезируемой на рибосоме полипептидной цепью, - или небольшим белком размером около 14 кДа, или отдельными доменами мультидоменных белков. С-концевой домен – ключевой в определении шаперонной активности ТФ. Взаимодействие ТФ с полипептидной цепью, хотя и происходит несколько позднее процесса трансляции, но значительно помогает действию ферментов пептид-деформилазе (PDF) и метионин-аминопептидазе (MAP) [90]. В растворе и цитоплазме ТФ *E. coli* в зависимости от концентрации образует форму димера с константой диссоциации K_d в интервале 1 – 18 мкМ [91].

Предполагалось, что основная функция АТФ - независимого шаперона ТФ фолдинг вновь синтезируемой полипептидной цепи, - тесно связана с работой рибосомы, с 50S-субъединицей которой ТФ формирует прочный комплекс (основной контакт с белком L23) [28, 92]. ТФ в Е. coli экспрессируется конститутивно в количестве, превышающем в 2-3 раза содержание рибосом [27, 93]. В работе [94] на модели *in vitro* транскрипционно-трансляционной системы было показано, что ТФ защищает вновь синтезируемый белок от деградации протеиназой К. Согласно основной схеме, ТФ, локализованный в рибосоме на месте высвобождения полипептидной цепи в цитоплазму, осуществляет первичную сборку белка, завершение же процесса сборки белка (фолдинг) осуществляют в цитоплазме шапероны DnaKJE и GroEL/ES [95-97]. Установлено, что связанный с рибосомой ТФ взаимодействует ко-трансляционно с практически всеми синтезируемыми белками, и что примерно 60-70% этих белков не нуждаются в дополнительном участии в их сборке шаперонов DnaK и GroEL [98]. Как показано в работе [99], ТФ в процессе первичной сборки белка (фолдинг), действуя совместно с рибосомой, задерживает (замедляет) окончательный фолдинг полипептида, значительно понижая вероятность формирования неправильных (misfolded) конформаций и агрегирования за счет введения в процесс дополнительных стадий, определяющих частичную раскрутку (unfolding) предварительно собранного домена, с последующим правильным процессом укладки цепи. Иными словами, действие ТФ осуществляется на микроуровне методом «проб и ошибок», в процессе которого происходит поочередное комплексирование с гидрофобными сегментами в полипептиде и последующее разрушение контакта, если связь «слабая» и т.д. [100].

Однако были получены экспериментальные данные, что ТФ участвует также в судьбе синтезируемых белков не только на рибосоме, но и в цитоплазме.

Рис 8. Модель участия Триггер Фактора в сборке белков в цитозоле [28].

В добавление к его роли в фолдинге белков de novo (вместе с DnaKJE и GroELS шаперонными системами) ТФ может связываться с нативными формами белков и стабилизировать их, осуществляя помощь в их кооперативной сборке (олигомеры, рибосомные субъединицы). Предпологается и что некоторые белки могут формировать нативную конформацию находясь связынными с ТФ.

Так, например, в работе [101] показано, что $T\Phi_{Ec}$ защищает от агрегации денатурированную щелочную фосфотазу (PhoA) в результате образующихся множественных контактов между гидрофобными участками, расположенными в $T\Phi$ на расстоянии около 90Å в двух различных доменах. При этом во

взаимодействии с денатурированным белком PhoA участвуют три молекулы ТФ (функции «холдазы»).

Показано также, что ТФ формирует комплекс с шапероном GroEL и тем самым способствует эффективной деградации неправильно собранных белков [102-103]. Обнаруживается связь активностей ТФ и шаперона DnaK. Показано, что двойной мутант dnaK tig (в бактериях E. coli ген tig кодирует синтез белка ТФ) характеризуется очень высоким уровнем агрегированных белков и не способен расти при температуре выше 30°С [104-106]. Протеомный анализ клеточных лизатов мутантных штаммов *E. coli* (выращенных при 30°С) с различными комбинациями делеций генов, кодирующих шапероны, показал следующие содержания белков в нерастворимой фракции: $\Delta dnaK dnaJ\Delta tig-1087$, $\Delta dnaK dnaJ-474$; $\Delta tig-15$, $\Delta groELgroES-33$, причем в двойном мутанте особенно нарастает фракция белков с высокими молекулярными массами >50 kDa, а также фракция рибосомальных белков, что указывает на дефект в биогенезе рибосом [107]. В работе [89] было показано, что ТФ соочищается и стабильно ассоциирован с большим количеством цитоплазматических полноразмерных полипептидных цепей. Авторы предположили, что ТФ участвует не только в котрансляционном фолдинге полипептидной цепи на рибосоме, но и в посттрансляционном процессе сохранения (стабилизации) нативной структуры белка, способствующему эффективному формированию третичной и четвертичной структур (олигомерные формы белков), в частности, формированию зрелых рибосомных частиц. Было показано также, что ТФ, изолированный из клеток Е. *coli*, осуществляет *in vitro* частичную ренатурацию (восстановление активности) денатурированного в 5М мочевине фермента глицеральдегид-3-фосфат дегидрогеназа (GAPDH) [108-109].

Содержание ТФ в клетках *E. coli* должно быть оптимальным. Как при снижении уровня ТФ вплоть до нокаут-мутации Δ*tig*, так и при суперпродукции ТФ (ген *tig* на плазмиде под индуцируемым промотором) наблюдается аномальный рост бактерий – формирование филаментов [106, 110] и даже летальный исход при низкой

29

температуре (4°С). Синтез ТФ не индуцируется при «тепловом шоке», но усиливается (примерно в 2 раза) при выращивании бактерий *E. coli* при низкой температуре [111].

Особенно ярко проявляется протекторная функция ТФ при низких температурах у бактерий – психрофилов. Оптимальная температура роста для психрофильных бактерий 10-15°С. Психрофильные бактерии способны расти при 4°С, но не растут при температуре выше 30°С, в отличие от мезофильных бактерий, которые не растут при 4°С и растут при 30°С и выше. Среда обитания психрофильных бактерий, как правило, холодные воды морей Арктики и Антарктики. Белки «холодового шока», по существу, являются ключевым компонентом клетки, определяющим способность психрофильных бактерий выживать при столь низких температурах.

ТФ у психрофильных бактерий является одним из важнейших белков «холодового шока», т.к. при переносе бактерий (*Pseudoalteromonas haloplanktis* TAC125) в среду с температурой 4°С количество синтезированного ТФ увеличивается примерно в 40 раз, т.е. во много раз больше по сравнению с усилением синтеза других белков «холодового шока» [112]. ТФ психрофильных бактерий (мол. масса 47.534 Da, 434 аминокислотных остатка), несмотря на высокий уровень гомологии с ТФ *E. coli* (61% идентичных и 85% подобных а.о.), в отличие от ТФ мезофильных бактерий, образует в растворе мономерную форму [113] и относится к группе термолабильных белков: точка плавления $T_m = 33$ °С [112]. Однако ТФ из психрофильных бактерий спонтанно и быстро восстанавливает нативную структуру при снижении температуры до комнатной, если раствор с ТФ предварительно был нагрет вплоть до 90°С.

Так как при «холодовом шоке» (4°С) у психрофильных бактерий происходит одновременно значительное снижение уровней белков-шаперонов «теплового шока» DnaK (в 13 раз) и GroEL (в 3 раза), то предполагается, что именно ТФ выполняет при низкой температуре основные функции шаперона, способствующие правильному фолдингу и рефолдингу синтезируемых белков [112]. На рис. 9 показано участие ТФ в действии шаперонов при фолдинге новосинтезированных белков *E. coli*.

Рис 9. Модель действия шаперонов в фолдинге новосинтезированных белков *E. coli* [28].

Полипептидные нити изначально взаимодействуюи с рибосом-связанным ТФ. После освобождения от ТФ они либо сворачиваются самостоятельно (примерно 2/3 цитозольных белков в нормальных условиях) либо нуждаются в дальнейшей помощи в сборке приимущественно шаперонными семействами Hsp70: шаперон DnaK, ко-шаперон DnaJ и нуклеотид обменный фактор GrpE (DnaKJE) и/или Hsp60: шаперон GroEL и ко-шаперон GroES (GroELS). АТФ зависимые DnaK- и GroEL-системы могут действовать как ко- и/или посттрансляционно. Глава 2. Участие шаперонов и протеаз в регуляции экспрессии генов *lux*оперонов люминесцирующих бактерий.

2.1. Структура *lux*-оперонов морских бактерий мезофильных *Aliivibrio fischeri* и психрофильных *Aliivibrio logei*.

У морских люминесцирующих бактерий *A. fischeri* и *A. logei* экспрессия *lux*генов регулируется системой "LuxI-LuxR", которая определяет интенсивность биолюминесценции растущих клеток в зависимости от плотности популяции (Quorum Sensing): отсутствие свечения при малых концентрациях клеток и резкое усиление свечения при достижении популяцией критической плотности [114-117]. На рис. 10 представлена структура *lux*-оперонов *A. fischeri* и *A. logei*.

Рис 10. lux-опероны A. fischeri и A.logei KCh1 [118, 125].

Lux-регулон *A. fischeri luxRICDABEG* состоит из двух оперонов: *luxR* с промотором P_l , и *luxICDABEG* с промотором P_r [118-119]. Гены *luxAB* кодируют а и β субъединицы люциферазы, а гены *luxCDE* кодируют субъединицы редуктазы, синтезирующей тетрадеканаль, субстрат люциферазы. Гены *luxI* и *luxR* кодируют регуляторные белки LuxI и LuxR. Ацилсинтаза LuxI осуществляет синтез аутоиндуктора (АИ), ацильного производного лактона L-гомосерина, - N-(3-оксогексаноил) лактон L-гомосерина [120], который играет ключевую роль в «общении» бактерий, так как свободно диффундирует через клеточные мембраны [121]. Белок LuxR – положительный регулятор (активатор) транскрипции оперона

luxICDABEG. Связываясь с АИ, белок LuxR приобретает способность образовывать комплекс с *lux*-боксом, представляющим собой инвертированный повтор из 20 п.н. в области промотора P_r, и активировать транскрипцию оперона *luxICDABEG* [122-124].

Сравнение структуры *lux*-оперона *A. logei* со структурой *lux*-оперона бактерий *A. fischeri* показывает значительные отличия структур этих *lux*оперонов. В структуре *lux*-оперона *A. logei* отсутствует ген *lux*I перед геном *lux*C, а непосредственно за геном *lux*G расположен фрагмент с генами *lux*R2 –*lux*I. Кроме того, спейсер между первым геном *lux*R1 и промотором P_r значительно превышает таковой у А. *fischeri* (более 500 н.п. против 200 н.п.). Принципиальным оличием является наличие в *lux*-опероне психрофильных бактерий *A. logei* двух копий регуляторного гена *lux*R1 и *lux*R2 [125-126]. Чувствительность к АИ регуляторной области *luxR1-P_{r1} A. logei* значительно ниже таковых регуляторных областей *luxR2-P_{r2} A. logei* и *luxR-P_r A. fischeri*, которые характеризуются примерно равной чувствительностью.

Рис. 11. Сравнение регуляторных областей *luxR1-Pr1* (×)и *luxR2-Pr2* (▲) *A. logei* и *luxR-Pr A. fischeri* (■) по чувствительности к АИ [126].

2.2. Участие бишаперонной системы DnaKJE-ClpB в рефолдинге термоинактивированных люцифераз (LuxAB).

Бактериальные люциферазы катализируют окисление длинноцепочечного альдегида (RCHO) кислородом воздуха с помощью восстановленного флавинмононуклеотида (FMNH₂) [117, 127]:

FMNH₂ + RCHO + O₂ = FMN + RCOOH +H₂O + квант света (λ_{max} =490 нм)

Бактериальные люциферазы относятся к группе термолабильных белков, инактивирующихся при температуре 35-42°С, что позволяет изучать особенности их термоинактивации и рефолдинга непосредственно в бактериальной клетке. Бактериальные люциферазы являются гетеродимерами, состоящими из α- и βсубъединиц с молекулярными массами около 40 и 35 кДа, соответственно. Субъединицы люцифераз гомологичны, но активный центр фермента расположен на α-субъединице. Роль β-субъединицы остается неясной, однако ее присутствие в комплексе резко увеличивает квантовый выход реакции [128-129].

В 1999 г. бактериальные люциферазы были впервые использованы в качестве субстратов для изучения активности шаперонных систем [35]. Было показано, что термоинактивированная люцифераза *A. fischeri* эффективно ренатурирует *in vivo* (в клетках *E. coli*) при непосредственном участии шаперонов системы DnaK-DnaJ-GrpE (DnaKJE). При исследовании эффективности действия шаперонов DnaKJE на субстратах – люциферазах, характеризующихся различной термостабильнотью, было показано, что чем выше термостабильность люциферазы, тем менее эффективен процесс DnaKJE-зависимой ренатурации [130].

Рис. 12. Кинетика термоинактивации бактериальных люцифераз *in vitro*[130]. По оси ординат указана активность люциферазы (в процентах от исходного уровня), по оси абсцисс – время термоинактивации. а. – Люциферазы *P. phosphoreum* (1) и *A. fischeri* (2), температура инактивации 36°С; б. – люциферазы *A. fischeri* (1), *V. harveyi* (2) и *P. luminescens* (3), температура инактивации 43,5°С.

На рис. 12 представлены кривые термоинактивации люцифераз, изолированных из нескольких видов люминесцирующих бактерий. Из сравнения тангенса угла наклона кривых термоинактивации можно заключить, что при 36°С люцифераза *Photobacterium phosphoreum* примерно в 10 раз термолабильнее люциферазы *A. fischeri* (рис. 12, а), в то время как люцифераза наземных бактерий *Photorhabdus luminescens* (при 43,5°С) примерно в 15 раз термостабильнее люциферазы морских бактерий *A. fischeri*. Промежуточное положение по термостабильности занимает люцифераза *Vibrio harveyi* (рис. 12, б).

На рис. 13 приведены зависимости степени ренатурации люцифераз (% от исходного уровня) от времени инкубации при температуре рефолдинга.

Рисунок 13. Кинетика рефолдинга термоинактивированных люцифераз в клетках *E. coli*. а – люциферазы *P. phosphoreum* (круги), и *A. fischeri* (треугольники); б – люциферазы *V. harveyi* (круги), *P. luminescens* (треугольники). Светлые символы – рефолдинг в клетках штамма MG1655, тёмные символы в клетках штамма PK202 $\Delta dnaKJ$ [130].

В клетках мутантного штамма РК202 $\Delta dnaKJ$ рефолдинг полностью отсутствует. В клетках *E. coli* MG1655 *dnaKJ*⁺ наблюдается рефолдинг всех люцифераз, однако, термолабильные люциферазы *P. phosphoreum* и *A. fischeri* ренатурируют значительно полнее (до 80-90% от исходного уровня), в то время как термостабильные люциферазы ренатурируют значительно слабее (25% – *V. harveyi*, 7-8% – *P. luminescens*). В этой же работе было показано, что DnaKJE-зависимый рефолдинг значительно (почти на порядок) снижается, если клетки *E. coli* несут мутацию в гене *clpB*, что непосредственно доказывает важность кошаперона ClpB для активности шаперона DnaKJE.

В работе [36] в качестве белков-субстратов в опыте *in vivo* использовали бактериальную (гетеродимерную) *V. harveyi* и светлячковую (мономерную) *Photinus pyralis* люциферазы для определения функции ко-шаперона Sse1p
(содержится в цитозоле дрожжей) в качестве фактора нуклеотидного обмена (nucleotide exchange factor, NEF) (аналог бактериального фактора GrpE) для Hsp70. Показано, что делеция гена SSE1 практически не влияла на эффективность рефолдинга термоинактивированной мономерной светлячковой люциферазы и значительно снижала уровень рефолдинга бактериальной гетеродимерной люциферазы. Однако причина столь значительной разницы в уровнях рефолдинга осталась не выясненной.

2.3. Участие шаперонина GroEL/ES и протеазы Lon в сборке и деградации белка LuxR, активатора транскрипции генов *lux*-оперона *A. fischeri*.

В 1992 г. одновременно двумя группами исследователей было обнаружено, что при введении плазмиды, содержащей полный *lux*-оперон *A. fischeri*, в *E. coli*, мутантные по гену *groEL*, интенсивность биолюминесценции клеток значительно снижается [131-132]. Авторы предположили, что шаперонин GroEL/ES участвет в сборке (фолдинге) белка – активатора транскрипции LuxR. В представленной диссертационной работе исследуется роль шаперонина GroEL/ES в фолдинге белков-регуляторов LuxR1 и LuxR2 психрофильных бактерий *A. logei*.

В работах [123, 133] было показано, что протеаза Lon проводит деградацию белка – активатора LuxR и тем самым участвует в негативной регуляции системы «quorum sensing» *Vibrio fischeri* (в настоящее время, *Aliivibrio fischeri*). Позднее влияние протеазы Lon было определено для систем «quorum sensing» в бактериях *Pseudomonas putida*. и *Agrobacterium tumefaciens*. [134-135]. Было показано также, что С-терминальный домен LuxR, определяющий связь белка с *lux*-боксом в ДНК, не является мишенью для протеазы Lon [136].

Lon-протеаза относится к семейству АТФ-зависимых сериновых протеаз, так как ключевую роль в процессе деградации играет аминокислотный остаток S679 [137]. При замене S679A фермент теряет протеолитическую активность, но сохраняет при этом способность связывать субстрат, что приводит к эффекту «секвестрирования» [138].

Помимо основной задачи – деградации неправильно собранных или поврежденных белков – протеаза Lon также проводит деградацию или

37

модификацию (ограниченное расщепление полипептида) ряда нативных белков, в основном являющихся регуляторами транскрипции. Например, протеаза Lon деградирует белок-ингибитор клеточного деления SulA, а также RcsA –активатор транскриции генов, кодирующих синтез колановых кислот. В результате бактерии *E. coli* формируют на твердом агаре слизистые колонии, а при обработке ДНК-повреждающими агентами растут в форме филаментов. Так же известно, что Lon проводит протеолиз активаторов транскрипции белков ответа на окислительный стресс SoxS и MarA [139]. Кроме того, оба основных структурных белка телец включения IbpA и IbpB подвержены разрушению протеазой Lon [78].

В представленной диссертационной работе исследуется влияние протеазы Lon на белки – регуляторы LuxR1 и LuxR2 психрофильных бактерий *A. logei*.

Экспериментальная часть

Глава 3. Материалы и методы исследования

3.1. Бактериальные штаммы.

Бактериальные штаммы *Escherichia. coli K-12*, использованные в работе, их генетические характеристики и источник получения приведены в таблице. Таблица 1. Бактериальные штаммы.

Название	Генотип	Источник		
штамма				
MG1655	$F^{-}\lambda^{-}$ ilvG- rfb-50 rph-1	E.A. Craig, CIIIA		
PK202	<i>dnaK14 dnaJ14 dks</i> A::kan (остальные	E.A. Craig, CIIIA		
	генетические маркеры как у MG1655)			
MG1655	<i>∆tig-722::kan</i> (остальные генетические	Данная работа		
tig::kan	маркеры как у MG1655)			
AB1157	<i>thr</i> -1, <i>araC14</i> , <i>leuB6</i> (Am), Δ (<i>gpt-proA</i>)62,	ВКПМ		
	<i>lacY1</i> , <i>tsx</i> -33, <i>qsr'</i> -0, <i>glnV44</i> (AS),			
	$galK2(Oc), \lambda$, Rac-0, hisG4(Oc), rfbC1,			
	<i>mgl</i> -51, <i>rpoS396</i> (Am), <i>rpsL31</i> (strR),			
	kdgK51, xylA5, mtl-1, argE3(Oc), thiE1			
AB1899	lon-1::IS186 (остальные генетические	ВКПМ		
	маркеры как у АВ1157)			
SKB178	F ⁻ galE ⁻ sup	С.З. Миндлин,		
		ИМГ РАН, Москва		
OFB1111	groEL673 (G173D, G337D) (остальные	С.З. Миндлин,		
	генетические маркеры как у SKB178)	ИМГ РАН, Москва		
SG20250	$F^{-}[araD139]_{B/r} \Delta(argF-lac)169 \lambda^{-} e14-$	S. Gottesman, CIIIA		
(MC4100)	flhD5301 ∆(fruK-yeiR)725(fruA25) relA1			
	$rpsL150(str^{R})$ $rbsR22 \Delta(fimB-$			
	fimE)632(::IS1) deoC1			
SG22100	<i>clpB102</i> (del-ins)::kan (остальные	S.Gottesman, CШA		

	генетические маркеры как у SG20250)	
XL1-Blue	$F'[::Tn10 \ proAB^+ \ lacI^q \ \Delta(lacZ)M15] \ endA1$	«Stratagene», США
	gyrA96(nal ^R) thi-1 recA1 relA1 lac glnV44	
	$hsdR17(r_{K} m_{K}^{+})$	
BL21(DE3)	$F^- ompT gal dcm lon hsdS_B(r_B^- m_B^-) \lambda(DE3)$	«Novagen», CША
	[lacI lacUV5-T7 gene1 ind1 sam7 nin5])	

Штамм MG1655*tig::kan* сконструирован с помощью P1-трансдукции. Источником мутантного гена *tig::kan* служил JW0426 (F⁻, Δ (*araD-araB*)567, Δ *lacZ4787*(::*rrnB-*3), Δ *tig-722::kan*, λ ⁻, *rph-1*, Δ (*rhaD-rhaB*)568, *hsdR514*) инсерционный мутант из «Keio collection» любезно предоставленный С. В. Машко (ЗАО «НИИ Аджиномото-Генетика», РФ)

Aliivibro logei KCh1 – получен из ВКПМ ФГУП «ГосНИИгенетика»

3.2. Среды, ферменты, реактивы.

Для выращивания культур и в опытах с клонированием использовали жидкую или агаризованную среду Луриа-Бертани (LB) и L-агар с добавлением соответствующих антибиотиков (ампициллин – 100 мкг/мл, канамицин – 40 мкг/мл и хлорамфеникол – 15 мкг/мл).

<u>L-среда на1 литр</u> :	Бакто-триптон	10 г.
	Бакто-дрожжевой экстракт	5 г.
	NaCl	10 г.

Агаризованная среда на 1литр L-среды: Бакто-агар 15 г.

Для приготовления буферных растворов использовали химические вещества фирмы «Sigma»(США), «Difco»(США), а также другие реактивы марки не ниже ОСЧ.

Реакции рестрикции, лигирования и ПЦР проводили с использованием ферментов фирмы «Fermentas» (Литва). Люциферин и *n*-деканаль получены от «Sigma MO» (США), NADH и FMN получены от «Serva» (Германия).

Лиофилизированные высоко очищенные ферменты двухкомпонентной системы (R+L) получены из лаборатории бактериальной биолюминесценции

(Институт биофизики СО РАН, Красноярск). Каждая проба содержит 0,5 мг/мл люциферазы и 0,15 U NADH:FMN – оксидоредуктазы из *P. leiognathi*. Светлячковая люцифераза *Photinus pyralis* была получена от «Roche».

3.3. Плазмиды:

pUC19, pUC18,	Ap ^r	«Fermentas» MBI
pACYC184,	Tet ^R Cm ^r	ВКПМ
pBR322	$Ap^{r} Tet^{R}$	ВКПМ
pTZ57R/T	Ap ^r	«Fermentas» MBI
pDEW201	Безпромотерный	T.K. Van Dyk, CIIIA [140]
	вектор. Содержит	
	кассету генов	
	luxCDABE lux оперона	
	Photorhabdus	
	luminescens в качестве	
	генов-репортеров Ар ^r	
pTF16	Ген <i>tig E. coli</i> под	TAKARA BIO INC
	контролем araB	
	промотора. Репликон	
	p15A	
pG-Tf2	Гены groELS и tig E.	TAKARA BIO INC
	coli, paсположенные	
	под контролем	
	тетрациклинового	
	промотора P _{zt-1} , а также	
	ген <i>tet</i> R, кодирующий	
	репрессор TetR.	
	Репликон р15А.	
pKJE7	Гены <i>dna</i> KJE под	TAKARA BIO INC

Таблица 2. Использованные в работе плазмиды.

	контролем промотора	
	araB.	
pF2	Гены <i>lux</i> AB A. fischeri	Наша лаборатория [141]
	под контролем <i>lac</i>	
	промотора.	
pLeo1	Гены <i>lux</i> -оперона	Наша лаборатория [142]
	Photobacterium	
	leiognathi под	
	контролем lac	
	промотора.	
pVFR1	Фрагмент ДНК	Наша лаборатория [124]
	A. fischeri, содержащий	
	ген <i>lux</i> R под	
	промотором Р ₁ и	
	регуляторную область с	
	правым промотором P _r	
	и <i>lux</i> -боксом в векторе	
	pDEW201	
pSV16	Ген <i>lux</i> R2 и	Наша лаборатория [125-
	регуляторная область	126]
	lux-оперона А. logei	
	KCh1 в векторе	
	pDEW201	
pIVA	Ген <i>lux</i> R1 и	Наша лаборатория [125-
	регуляторная область	126]
	lux-оперона А. logei	
	KCh1 в векторе	
	pDEW201	
pXen4	Гены <i>lux</i> AB	Наша лаборатория [143]
	люциферазы	

	Photorhabdus	
	luminescens под	
	контролем lac	
	промотора в векторе	
	pUC19.	
pKlux	Плазмида содержит	Наша лаборатория [144]
	гены <i>lux</i> AB Vibrio	
	harveyi под контролем	
	<i>lac</i> промотора.	
pPho1	Гены <i>lux</i> AB	Завильгельский Г. Б., [145]
	Photobacterium	
	phosphoreum,	
	расположенные под	
	контролем lac	
	промотора.	
pT7-mut3	Моноцистронная форма	E. Meighen, CIIIA [146]
	генов luxAB V. harveyi,	
	кодирующих	
	мономерную	
	бактериальную	
	люциферазу,	
	расположенная под	
	контролем araB	
	промотором	
pSVAB1	Гены <i>lux</i> AB <i>A. logei</i>	данная работа
	KCh1, расположенные	
	под контролем <i>lac</i>	
	промотора.	
pL48K	Плазмида pSVAB1,	данная работа
	содержащая замену	

	аминокислотного	
	остатка в гене <i>luxB</i> .	
	Лейцин в позиции 48	
	заменен на лизин.	
pT7tig	Ген tig E. coli,	данная работа
	расположенный	
	подконтролем Т7	
	промотора	
pLR	Ген <i>luc</i> люциферазы	проф. Н.Н. Угарова,
	Luciola mingrelica	МГУ им. М.В Ломоносова,
	расположенный под	Москва [147]
	контролем промотора P _r	
	lux оперона А. fischeri	
p15aratighisPF	Ген tig P. frigidicola	J.G. Wall, Ирландия [113]
	расположенный под	
	контролем	
	арабинозного (araB)	
	промотора. Репликон –	
	p15A	

pDEW201. Вектор pDEW201 (Рис. 14) имеет репликон pMB1 и содержит встроенную кассету генов *luxCDABE Photorhabdus luminescens*. Непосредственно перед геном *lux*C находится полилинкер, позволяющий осуществлять клонирование фрагмента ДНК по уникальным сайтам рестрикции эндонуклеаз. Для ограничения любой остаточной транскрипции перед полилинкером расположены 4 участка, содержащих Т1 терминатор фага λ. Клонирование в эту полилинкерную область любых промоторных участков позволяет исследовать их регуляцию транаскрипции путем определения биолюминесценции.[140]

Рис. 14. Структура вектора pDEW201 [140].

pVFR1, pSV16 и pIVA. Для конструирования плазмиды pVFR1 фрагмент ДНК *A*. *fischeri* (около 1 т.н.п.) был изолирован с помощью праймеров:

Direct	- 5'-CCAACCTCCCTTGCGTTTATTCG-3'
Reverse	- 5'-GAGCAGCTTATTCGTCAAGATTTC-3'

Матрицей служила плазмида pF1, содержащая полный *lux*-perулон *A. fischeri* (*luxRluxICDABE*) в векторе pBR322. Далее ПЦР-продукт был встроен в вектор pTZ57R и затем переклонирован по сайтам *Eco*RI – *Bam*HI в беспромоторный вектор pDEW201 так, что регуляторная область *lux*-оперона оказалась расположенной непосредственно перед генами *lux*CDABE *Ph. luminescens*. [124]. Аналогично данной плазмиде были сконструированы плазмиды pSV16 и pIVA, путем встраивания гена *luxR2* с промоторной областью из *A. logei* KCh1*u luxR1* с промоторной областью из *A. logei* KCh1*u luxR1* с вектор pDEW201. Транскрипцию с правого промотора P_r инициировали добавлением в среду АИ, N-(3-оксогексаноил) лактон L-гомосерина («Sigma»).

Рис.15. Структура lux-участков в плазмидах a) pVFR1; б) pSV16; в) pIVA. [124-126].

рТ7-тит3. Межцистронная область размером 29 п.н., соединяющая гены *lux*A и *lux*B, была мутирована с помощью синтетических праймеров, в результате чего между последним транслируемым кодоном и стоп-кодоном ТАА в гене *lux*A был встроен нуклеотид G, а в положении –15 от luxB нуклеотид T заменен на G. Кроме того, нуклеотиды A и T в положениях +1 и +2 в гене luxB заменены на C и A соответственно. В результате в моноцистронном гене mut3 кодон инициатор ATG гена *lux*B был заменен на кодон CAG, кодирующий глутамин. Ген *mut3* был клонирован в экспрессирующий вектор pT7-5 [146].

3.4. Генно-инженерные методы.

Выделение плазмидной ДНК, рестрикцию и лигирование фрагментов ДНК, трансформацию клеток *E. coli* проводили согласно стандартным методам, изложенным в [148].

Трансформацию клеток *E. coli* проводили по стандартной методике (148). Компетентные клетки готовили по методу Манделя [149]. Ночную культуру выращивали в LB бульоне, разводили в 100 раз и растили при хорошей аэрации до оптической плотности клеток 0,6. Затем клетки центрифугировали и ресуспендировали в 0,1M CaCl₂. После добавления трансформируемой плазмидной ДНК клетки инкубировали при температуре +4°C в течение 30 мин. Далее проводился «тепловой шок» при 42°C 2 мин. После добавления LB клетки инкубировали 30 мин при 37°С и высевались на твердый L-агар. Клоны *E coli* со вставками плазмидной ДНК отбирали по резестенции к антибитику.

ПЦР проводили на приборе «Терцик» (ДНК-технология, Россия). Температурный режим подбирали с учетом длины амплифицированного фрагмента, длины и состава используемых праймеров. Выделение и очистку ПЦР продуктов проводили с использованием набора DNA extraction kit («Fermentas» MBI, Литва).

При необходимости для верификации правильности соединения «концов» при конструировании биосенсоных гибридных плазмид проводили секвенирование интересующих участков, полученных в результате клонирования генов и промоторов. Секвенирование ДНК проводили с помощью дидезоксинуклеотидтрифосфатов согласно Сэнгеру и др. [150].

Трансдукцию бактериофагом Р1 проводили по стандартной методике [151]. Культуру клеток *E coli* растили в LB в течение 12 часов при температуре 37⁰C. Клетки осаждали, дважды промывали физиологическим раствором, содержащим 0,025M CaCl₂. К полученному препарату клеток добавляли лизат фага P1 разведения (10⁹ фаговых частиц/мл), инкубировали 20 мин при температуре 37°C и высевали на чашки с селективной средой. Отбор трансдуктантов проводили методом реплик.

3.5. Конструирование плазмид.

pSVAB1. Фрагмент ДНК, содержащий гены *lux*AB люциферазы *A. logei* KCh1, был амплифицирован с помощью ПЦР с использованием праймеров:

LuxA Kch1 dir 5' - GCG TGA CTG TAA AAG AGC GTC GAT T - 3' LuxB Kch1 rev 5' - GAA GAC TGG CGC AGT TAA TTC TGT CA - 3'

В качестве матрицы использовалась плазмидная ДНК pSV20, содержащая фрагмент ДНК с полным *lux*-опероном штамма *A. logei* KCh1, встроенном в вектор pUC18. Далее фрагмент был встроен под контроль *lac* промотора в вектор pUC18.

рТ7tig. Фрагмент ДНК, содержащий ген *tig* из *E. coli*, кодирующий ТФ, был амплифицирован с помощью ПЦР с использованием праймеров:

5'- ccc ccc ata tgc aag ttt cag ttg aaa cca ctc a-3',

5'- aaa aac tcg aga aat tac gcc tgc tgg ttc atc ag-3'

и хромосомальной ДНК *E. coli* XL1-Blue в качестве матрицы. Амплификацию проводили с помощью ДНК - полимеразы Pfu. Амплифицированный фрагмент ДНК был очищен с использованием электрофореза, расщеплен рестриктазами NdeI и XhoI и встроен в плазмиду pT7luc [152]. В результате ген *luc* в этой плазмиде был замещен на ген *tig*. Сконструированной плазмидой pT7tig трансформировали клетки штамма *E. coli* BL21(DE3).

pL48K.

Фрагмент гена *luxB*, содержащий замененный 48ой аминокислотный остаток лейцина на лизин, был получен при помощи метода ПЦР.

Используя плазмидную ДНК pSVAB1 как матрицу, были проведены две ПЦР реакции: первая с использованием праймеров

 $887L48Kf, \ gaag att cacgcgaa ataacacaa cat$

 $L48KR,\,ccaacgataccatttttagaaaagtggtgttca$

и вторая с использованием праймеров

L48KF, tgaacaccacttttctaaaaatggtatcgttgg

L48K671r, gcgttttctttaatgattgtctttattttttc

Третья ПЦР реакция проводилась с использованием праймеров

887L48Kf, gaagattcacgcgaaataacacaacat

L48K671r, gcgttttctttaatgattgtctttattttttc

в качестве матрицы использовали смесь из продуктов двух предыдущих ПЦР реакций.

Получившийся амплифицированный фрагмент ДНК был встроен в вектор pTZ57R/T. Затем фрагмент гена *luxB*, содержащий мутацию L48K, был переклонирован в исходный вектор pSVAB1 по сайтам рестрикции NcoI и ClaI.

3.6. Измерение интенсивности биолюминесценции.

Бактериальные люциферазы катализируют реакцию окисления алифатического альдегида (RCHO) кислородом воздуха (O₂) при участии восстановленного флавин-мононуклеотида (FMNH₂):

FMNH₂ + RCHO + O_2 = FMN + RCOOH + H_2O + квант света (λ_{max} = 490 нм).

Измерение интенсивности биолюминесценции суспензии клеток (200 мкл) проводили на люминометре LM-01T («Immunotech», Чехия) или Biotox 7 (ООО «Ekon», Россия) с добавлением в качестве субстрата реакции 2 мкл 0,001% -го спиртового раствора n-деканаля (Sigma) при необходимости. Измерение интенсивности биолюминесценции (в мкВ) проводили при комнатной температуре. Для определения активности светлячковой люциферазы к суспензии клеток *E. coli* (pLR) в объеме 0,16 мл добавляли 40 мкл 1,0 мМ раствора люциферина в 0,1 М цитрате натрия (pH 5,0).

3.7. Термоинактивация и рефолдинг люциферазы in vivo.

Термоинактивацию люцифераз проводили в водяной бане при фиксированной температуре. К суспензии клеток для ингибирования синтеза белка добавляли хлорамфеникол в концентрации 167 мкг/мл. Рефолдинг люцифераз проводили при 23°С. Через определенные интервалы времени отбирали пробу (200 мкл) и сразу после добавления n-деканаля (субстрат люциферазной реакции) измеряли интенсивность биолюминесценции.

Предварительный «тепловой шок» проводили, инкубируя клетки *E. coli* в LB в термостате при 42°C 30 мин без добавления хлорамфеникола.

3.8. Выделение и очистка Триггер Фактора.

Клетки *E. coli* BL21(DE3) (pT7tig) растили в среде LB с добавлением ампициллина (100 мкг/мл) при 37°С. Экспрессию гена *tig* индуцировали при достижении OD₆₀₀ = 0,6 добавлением ИПТГ (1,0 мМ) и инкубировали 3 часа. Клетки осаждали центрифугированием, ресуспендировали в буфере (50 мМ Нереs-КОН, pH 7,6, 10 мМ ацетат магния, 70 мМ ацетат калия, 1,0 мМ DTT, 2,0 мкМ PMSF (фенил-метилсульфонил флюорид) и лизировали в Френч-прессе. Лизат осветляли центрифугированием. Супернатант диализовали против буфера A (20 мМ Tris-HCl, pH 7,6, 1 мМ ЭДТА и 20 мМ 2-меркаптоэтанол) с 50 мМ NaCl и наслаивали на колонку с DEAE – сефарозой FF, уравновешанную тем же буфером. Элюцию белков проводили линейным градиентом от 50 мМ до 500 мМ NaCl в буфере А. Фракции, содержащие ТФ, были собраны, разведены в буфере А и наслоены на колонку MonoQ. Пики, содержащие белок ТФ, диализовали против буфера 50 мМ Na-фосфат (pH 7,0) и наслаивали на колонку с гидроксилапатитом. Элюцию белка ТФ проводили линейным градиентом 50 мМ - 500 мМ фосфатного буфера и затем полученный белок диализовали против буфера А, содержащего 50 мМ NaCl. Полученный белок замораживали в жидком азоте и хранили при –80°C. Концентрацию белка определяли спектрофотометрически, используя коэффициент экстинкции $\varepsilon_{280} = 15 930 \text{ M}^{-1} \text{ см}^{-1}$ [153].

3.9. Рефолдинг бактериальной и светлячковой люцифераз in vitro.

Для измерения активности бактериальной люциферазы использовали двухкомпонентную ферментную систему (R + L): NADH: FMN-оксидоредуктаза + люцифераза [154]. Эта система включает две ферментативные реакции:

> $FMN + NADH \rightarrow FMNH_2 + NAD^+$ $FMNH_2 + RCHO + O_2 \rightarrow FMN + RCOOH + H_2O + hv$

Первая реакция продуцирует непрерывно восстановленный флавин FMNH₂, который, в свою очередь обеспечивает постоянный уровень биолюминесценции.

Перед измерением интенсивности биолюминесценции ферменты системы (R+L) растворяли в 0,05 М К-фосфатном буфере (pH 6,8). Реакционная смесь содержала 5 мкл раствора ферментной системы, 200 мкл 0,05 М К-фосфатного буфера (pH 6,8), 200 мкл 0,4 мМ NADH, 50 мкл 0,5 мМ FMN и 5 мкл 0.001% *п*-деканаля. Все компоненты последовательно вносили в кювету и быстро перемешивали. Кювету ставили перед фотоумножителем в люминометр и измеряли максимальную интенсивность биолюминесценции *I*_{макс} (в относительных единицах, OE).

Для измерения кинетики ренатурации люциферазы *in vitro* использовали 5 мкл ферментной системы в буфере A с 50 мМ NaCl. Термоинактивацию люциферазы *P, leiognathi* проводили прогреванием при 40°C в течение 7 мин в присутствии ТФ или БСА. Инкубацию проб в ходе рефолдинга проводили при 22°C. Для измерения активности люциферазы, в аликвоту данной пробы добавляли равный объем буфера, содержащего 400 мкМ NADH, 100 мкМ FMN и 5 мкл 0,001%-ного *n*-деканаля. Измерение активности люциферазы проводили при комнатной температуре.

Для измерения кинетики рефолдинга использовали светлячковую люциферазу *Photinus pyralis* в буфере, содержащем 14 мМ ацетат магния. 26 мМ HEPES-KOH (pH 7,5), 27 мМ ацетат калия, 210 мМ К-глутамат и 1,7 мМ дитиотреитол [155]. Термоинактивацию люциферазы проводили прогреванием при 42°C в течение 10 мин в присутствии 6 мкМ ТФ. Инкубацию проб при рефолдинге проводили при 22°C. Для измерения активности люциферазы в аликвоту данной пробы добавляли равный объем такого же буфера, содержащего 6 мкМ ТФ, 1,2 мМ АТР и 0,1 мМ люциферина.

Результаты и обсуждение

Глава.4. Участие АТФ-зависимых шаперонов и протеаз в экспрессии генов lux-оперонов психрофильных бактерий *A. logei* и мезофильных *A. fischeri*. 4.1. Исследование роли шаперонина GroEL/GroES в фолдинге и поддержание активных форм белков LuxR1 и LuxR2 психрофильных бактерий *A. logei*.

На рис 16 приведена зависимость интенсивности биолюминесценции от времени инкубации клеток *E. coli* штаммов SKB178 gro^+ и OFB1111groEL673, содержащих плазмиду pIVA (A) или pSV16 (Б) в составе которых, гены *luxCDABE P. luminescens* находятся под контролем промотора регулируемого белком LuxR1 (рис 16A) и LuxR2 (рис 16Б) *A.logei*. В среду добавляли АИ конечной концентрации 10 мкМ. Клетки ночной культуры инокулировали с начальной $OD_{600} = 0.01$ и растили в среде LB с ампициллином (100 мкг/мл) с аэрацией при 28°C до начала экспоненциальной фазы ($OD_{600} = 0,2-0,3$). Затем клетки разделяли на аликвоты и после добавления различных концентраций АИ, продолжали инкубацию без перемешивания при 23°C. Измерение интенсивности биолюминесценции проводилось каждые 2-3 мин.

Как видно, отсутствие шаперона GroEL не сказывается ни на времени начала нарастания, ни на максимальном значении биолюминесценции клеток, содержащих плазмиду pIVA (*luxR1*). Это означает, что GroELS не участвует в процессе сборки белка LuxR1.

В противоположность этим данным в клетках, содержащих плазмиду pSV16 (*luxR2*), отсутствие шаперона GroEL вызывает задержку во времени начала нарастания биолюминесценции и уменьшает максимальное значение интенсивности биолюминесценции примерно в 10 раз. Следовательно, можно утверждать что, шаперонин GroELS участвует в фолдинге белка LuxR2. Количество активных форм белка LuxR2 значительно увеличивается в процессе синтеза, что позволяет эффективнее образовать димерную форму (LuxR2)₂, связывая АИ, и, соответственно, индуцировать экспрессию генов, находящихся под контролем промотора, регулируемого белком LuxR2.

4.2. Влияние протеазы Lon на активность белков LuxR1 и LuxR2 психрофильных бактерий *A. logei*.

Для определения влияния протеазы Lon на активность белков LuxR1 и LuxR2 из психрофильной бактерии *A. logei* использовали клетки *E. coli* штаммов AB1157 lon^+ и AB1899 lon^- , содержащие плазмиду pIVA (рис 17А) и pSV16 (рис 17Б) в составе которых, luxCDABE гены *P. luminescens* находятся под контролем промотора регулируемого белком LuxR1 (А) и LuxR2 (Б) *A.logei*, в присутствии AU конечной концентрации 10 мкМ. Клетки ночной культуры инокулировали с начальной $OD_{600} = 0.01$ и растили в среде LB с ампициллином (100 мкг/мл) с аэрацией при 28°C до начала экспоненциальной фазы ($OD_{600} = 0,2-0,3$). Затем клетки разделяли на аликвоты и после добавления различных концентраций AU продолжали инкубацию без перемешивания при 23°C. Измерение интенсивности биолюминесценции проводилось каждые 2-3 мин.

Рис 17. Влияние протеазы Lon на LuxR1 (А) и LuxR2 (Б). Концентрация АИ – 10мкМ. (▲) – АВ1157 *lon*⁺; (●) – АВ1899 *lon*⁻.

Как видим, протеаза Lon не влияет ни на повышение уровня интенсивности биолюминисценции, ни на начало подъема биолюминисценции. Это свидетельствует о том, что LuxR1 не является мишенью для протеазы Lon. В отличие от LuxR1 белок LuxR2 индуцирует транскрипцию генов с регулируемого промотора значительно эффективнее в штамме, содержащем мутацию в гене *lon* (рис. 17, Б).

4.3. Сравнение влияния шаперонина GroEL/GroES и протеазы Lon на фолдинг и поддержание активных форм белка LuxR2 психрофильных бактерий *A. logei* и LuxR мезофильных бактерий *A. fischeri*.

На Рис. 18 приведены зависимости интенсивности биолюминесценции клеток SKB178 gro^+ и OFB1111groEL673 от концентрации добавленного АИ. Штаммы содержали плазмиду pVFR1, в составе которой гены *luxCDABE P. luminescens* находятся под контролем промотора, активируемого белком LuxR *A. fischeri*. Клетки ночной культуры инокулировали с начальной *OD* = 0.01 и растили в среде LB с ампициллином (100 мкг/мл) с аэрацией при 28°C до экспоненциальной фазы (*OD* = 0,4-0,5). Затем инкубировали 30 мин при 42°C и после добавления

различных концентраций АИ, продолжали инкубацию без перемешивания при 23°С. Через определенные интервалы времени отбирали пробы по 200 мкл и измеряли интенсивность биолюминесценции. Максимальная интенсивность биолюминесценции наблюдается через 60 мин.

Рис. 19. Влияние шаперонина GroELS на белка LuxR мезофильных бактерий *A. fischeri.* (\Box) – SKB178 *gro*⁺(pVFR1); (\Box) – OFB1111*groEL*673 (pVFR1).

Как видно из рис. 19, минимальная (пороговая) концентрация АИ, при которой происходит резкой увеличение биолюминесценции, в случае штамма SKB178 gro^+ равняется 10^{-9} M, в то время как для мутантного штамма OFB1111groEL673 пороговая концентрация АИ равна 10^{-7} M. Снижение чувствительности к АИ в 100 раз в штамме с мутацией groEL673 объясняется уменьшением количества белка LuxR в нативной форме и, соответственно, способного готового связывать АИ, димеризоваться и взаимодействовать с промоторной областью. Как видим, уровень интенсивности биолюминесценции становится равным в gro^+ и groEL673 штамме при больших концентрациях добавляемого АИ. Следовательно, дефект groEL673 в определенной степени может быть компенсирован при добавлении в среду высоких концентраций АИ. Исследование влияние шаперонина GroELS на активность белка LuxR2 *A. logei* в качестве активатора транскрипции также проводилось в штамме *E. coli*, мутантном по гену *groEL*, в сравнении со штаммом *gro*⁺. На рис. 20 приведена зависимость максимальной интенсивности биолюминесценции клеток SKB178 *gro*⁺ и OFB1111 *gro*EL673 от конечной концентрации добавленного АИ. Штаммы SKB178 *gro*⁺ и OFB1111 *gro*EL673 содержали плазмиду pSV16 в составе которой, *luxCDABE* гены *P. luminescens* находятся под контролем регулируемого белком LuxR2 промотора. Клетки ночной культуры инокулировали с начальной *OD* = 0.01 и растили в среде LB с ампициллином (100 мкг/мл) с аэрацией при 28°C до экспоненциальной фазы (*OD* = 0,4-0,5). Затем инкубировали 30 мин при 42°C и после добавления различных концентраций АИ, продолжали инкубацию без перемешивания при 23°C. Через определенные интервалы времени отбирали пробы по 200 мкл и измеряли интенсивность биолюминесценции. Максимальная интенсивность биолюминесценции наблюдается через 60 мин.

Рис. 20. Влияние GroELS на фолдинг белка LuxR2 психрофильных бактерий *A. logei.* (▲) – SKB178 *gro*⁺ (pSV16); (◆) – OFB1111*groEL*673 (pSV16).

Как и в случае с белком LuxR *A. fischeri*, наблюдается примерно 100кратное увеличение пороговой концентрации АИ, требующегося для активации транскрипции белком LuxR2 *A. logei*, в штамме с мутацией *gro*EL673. Это означает, что для большей чувствительности к АИ, предпочтительно присутствие в клетках шаперонина GroELS, увеличивающего количество активного белка LuxR2. Добавление АИ высокой концентрации к клеткам *E.coli* OFB1111*groEL*673 (pSV16) снижает, но, все же, полностью не нивелирует разницу в интенсивности биолюминесценции между штаммом с мутацией *gro*EL673 и штаммом *gro*⁺. По-видимому, белок LuxR2 из психрофильных бактерий *A. logei* менее стабилен, чем LuxR из мезофильных бактерий *A. fischeri* и, не успевая связаться с АИ, денатурирует быстрее или инактивируется уже после образования комплекса с АИ.

Для сравнения действия протеазы Lon на активность белков LuxR из *A. fischeri* и LuxR2 из *A. logei*, использовали штаммы бактерий *E. coli* AB1157 *lon*⁺ и AB1899 *lon*⁻. В клетки этих штаммов были введены плазмиды, в которых гены *luxCDABE P. luminescens* находятся под контролем промотора, регулируемого белком LuxR *A. fischeri* (плазмида pVFR1) и под контролем промотера, регулируемого белком LuxR2 *A. logei* (плазмида pSV16).

Клетки ночной культуры инокулировали с начальной OD = 0.01 и растили в среде LB с ампициллином (100 мкг/мл) с аэрацией при 28° C до экспоненциальной фазы (OD = 0,4-0,5). Затем инкубировали 30 мин при 42° C и после добавления различных концентраций AU, продолжали инкубацию без перемешивания при 23°C. Через определенные интервалы времени отбирали пробы по 200 мкл и измеряли интенсивность биолюминесценции. Максимальная интенсивность биолюминесценции наблюдается через 60 мин. На рис. 21 приведена зависимость максимального уровня биолюминесценции от конечной концентрации AU, добавленного к пробам с клетками бактерий *E. coli* штаммов AB1157 *lon*⁺ и AB1899 *lon*⁻, содержащих плазмиду pVFR1.

Рис.21 . Влияние протеазы Lon на активноть белка-активатора LuxR из A. fischeri. ($^{\circ}$) – AB1157 lon⁺; ($^{\circ}$) – AB1899 lon⁻.

В клетках *E. coli* AB1899 *lon-1* (pVFR1), наблюдается уменьшение, примерно в 10 раз, пороговой концентрации АИ приводящей к значительному активации транскрипции (Puc 21). Уменьшение пороговой концентрации и повышенная интенсивность биолюминисценции при малых концентрациях АИ в штамме *lon-1* свидетельствует о том, что LuxR подвергается Lon-зависимому протеолизу. Кроме того, отметим, что добавление к клеткам высоких концентраций АИ оказывает защитное действие от деградации Lon протеазой.

Для исследования влияния протеазы Lon на эффективность работы активатора транскрипции LuxR2 из психрофильных бактерий *A. logei*, интенсивность биолюминесценции, которая обеспечивается наличием плазмиды pSV16, также измеряли в клетах *E. coli* AB1157 *lon*⁺ и AB1899 *lon*⁻. Зависимость интенсивности биолюминесценции клеток культур AB1157 (pSV16) и AB1899 (pSV16) от концентрации добавленного АИ представлена на рис. 22.

Рис 22. Влияние протеазы Lon на LuxR2. (\blacktriangle) – AB1157 lon⁺; (\blacklozenge) – AB1899 lon⁻.

Отсутствие протеазы Lon повышает чувствительность к AU белка LuxR2 примерно на порядок. Помимо этого интенсивность биолюминесценции, при одинаковых концентрациях добавленного AU, увеличивается примерно на порядок в клетках с дефективным геном *lon*. Отметим, что в случае с белком LuxR2, защитное от деградации протеазой Lon действие добавленого AU менее эффективно.

Приведённые данные свидетельствуют о том, что шаперонин GroEL является положительным модулятором активности экспрессии генов *lux*-оперона *A. logei*, в то время как протеаза Lon осуществляет негативную модуляцию активности. Белок LuxR2 – регулятор *lux*-оперона *A. logei* является мишенью как для шаперонина GroEL, так и для протеазы Lon. Наличие в клетках большого количества AU помогает восстановить активность LuxR *A. fischeri* и активировать транскрипцию генов *luxCDABE* до того уровня, который фиксируется в присутствии шаперонина GroEL/GroES или в отсутствии протеазы Lon. Также имеет место защитное действие AU с белком LuxR2 *A. logei*, однако полного восстановления эффективности транскрипции не происходит.

4.4. Сравнение термостабильности и способности к рефолдингу люцифераз психрофильных бактерий *A. logei* и мезофильных бактерий *A. fischeri*.

В работе [156] было показано, что термостабильность люциферазы в основном определяется структурой фрагмента альфа-субъединицы, содержащего аминокислотные остатки 166-233 (альфа-спирали 5 и 6). Термочувствительность химерного белка, содержащего в основном полипептидную цепь альфа-субъединицы (а также бета-субъединицу) термостабильной люциферазы *P. luminescens* и только фрагмент 166-233 люциферазы *P. phosphoreum*, практически совпала с таковой термолабильной люциферазы *P. phosphoreum*.

альфа-субъединиц люцифераз A. logei, A. fischeri и P. phosphoreum.

Аминокислотные последовательности белков *A. fischeri* и *A. logei* высоко гомологичны и при этом значительно отличаются от соответствующей аминокислотной последовательности люциферазы *P. phosphoreum*. Высокая гомология фрагментов последовательностей аминокислотных остатков 166-233 дают основание высказать предположение о близком родстве *lux*-оперонов психрофильных бактерий *A. logei* и мезофильных бактерий *A. fischeri*. Скорость термоинактивации примерно равна для люцифераз бактерий *A. fischeri* и *A. logei*. (рис 24)

Однако люциферазы психрофильных бактерий *A. logei* и мезофильных бактерий *A. fischeri* характеризуются значительным отличием процессов DnaK - зависимого рефолдинга после термоинактивации (рис 25)

Было предположено, что пониженная способность люциферазы *A. logei* ренатурировать с помощью шаперонов семейства DnaKJE-ClpB, возможно, определяется аминокислотными заменами в области С-терминальных альфа-

спиралей (альфа-спирали 3 и 4), которые участвуют в формировании гетеродимера (альфа-бета). Эти аминокислотные замены могли приводить к ослаблению контакта в гетеродимере между мономерами, и распаду гетеродимера на мономеры при термоинактивации, что значительно снизило бы эффективность рефолдинга люциферазы, проводимого системой шаперонов DnaKJE-ClpB. В работе [129] были определены аминокислоты, участвующие в межсубъединичном контакте люциферазы *V.harvei*. Для нахождения вступающих в межсубъединичное взаимодействие аминокислотных остатков в люциферазах *V.harvei*, *A. logei* и *A. fischeri*, было построено выравнивание этих люцифераз.

LuxB	17	18	45	47	48	50	57	61	80	82	85	88	89	95	152
A.fischeri	S	Е	Н	S	K	G	Т	F	Т	Н	R	Е	Е	Q	D
A.logei	S	Е	Н	S	L	G	Т	F	Т	Н	R	Е	Е	Q	D

Рис. 23. Сравнение аминокислот в β-субединицах бактериальных (LuxB) люцифераз *A.fischeri* и *A.logei* в позициях контакта с α-субъединицей (LuxA).

Сравнивание аминокислот в позициях межсубъединичного контакта люцифераз показало, что все, кроме одной, вступающие в контакт аминокислоты люцифераз бактерий *A. fischeri* и *A. logei* либо идентичны, либо схожи по заряду и длине боковой цепи. Для проверки важности единственной аминокислотной замены в субъединице LuxB люциферазы *A. logei*, а, следовательно, и всего межсубъединичного контакта, в процессе рефолдинга люциферазы *A. logei* был сконструирован мутантный *luxB* ген, кодирующий β-субъединицу люциферазы *A. logei* с заменой L48K. В полученном белке LuxB L48K все аминокислоты, участвующие в межъсубъединичном контакте совпадают с таковыми у люциферазы из *A. fischeri*.

На рис. 24 представлены кинетические кривые термоинктивации нативной люциферазы LuxAB *A. logei* и мутантной люциферазы *A. logei* LuxAB L48K, полученные при инкубации клеток при 33°C. Для сравнения приведены также кинетические кривые термоинактивации люциферазы мезофильных бактерий

A. fischeri и люциферазы психрофильных бактерий *P. Phosphoreum.* Термоинактивацию люцифераз проводили *in vivo* в клетках *E. coli* K12 штамма PK202 *dnaKJ14*, содержащих гибридную плазмиду с генами *luxAB* (pF2, pSVAB1, pPho1, pL48K). Бактерии росли при 28°C до середины экспоненциальной фазы. Затем для ингибирования синтеза белка к суспензии клеток добавляли хлорамфеникол (167 мкг/мл) и помешали в водяную баню на 33°C.

Рис. 24 .Инактивация мезофильной люциферазы *A. fischeri* и психрофильной люциферазы *A. logei*, ее мутантного варианта и люциферазы *P. phosphoreum* при 33° С. ▲ – *A. logei* LuxAB L48K; ■ – *A. fischeri* LuxAB; ◆ – *A. logei* LuxAB; ● –

P. phosphoreum LuxAB.

Как видим, зависимость от времени термоинактивации люцифераз *A. logei*, ее мутантного варианта и люциферазы *A. fischeri* практически идентична. Заметно даже некоторое увеличение термостабильности для мутантного варианта LuxAB L48K. Это показывает, что мутация L48K как минимум не делает люциферазу *A. logei* более термочувствительной. Люцифераза *P. phosphoreum* инактивируется при 33°C значительно быстрее.

Кинетику и уровень рефолдинга термоинактивированных люцифераз измеряли *in vivo* в клетках *E. coli* K12 MG1655, содержащих гибридную плазмиду

с генами luxAB (pF2, pSVAB1, pPho1, pL48K). Бактерии росли при 28°C до середины экспоненциальной фазы с последующим их выдерживанием в течение 30 мин при 42°C без перемешивания для индукции «теплового шока». Затем для ингибирования синтеза белка к суспензии клеток добавляли хлорамфеникол (167 мкг/мл), а для инактивации люциферазы клетки помешали в водяную баню на 5 мин при 46°C. Уровень инактивации активности ферментов составлял примерно $10^{-2} - 10^{-3}$ от исходного. Рефолдинг термоинактивированных люцифераз проводили при 23°C. На рис. 25 представлены зависимости степени ренатурации люцифераз (% от исходного уровня) от времени инкубации.

Рис 25. .Рефолдинг мезофильной люциферазы *А. fischeri* и психрофильной люциферазы *А. logei*.в клетках *Е. coli* штамма MG1655. ▲ – *А. logei* LuxAB L48K;

■ – *A. fischeri* LuxAB; \blacklozenge – *A. logei* LuxAB; \blacklozenge – *P. phosphoreum* LuxAB.

Все четыре люциферазы восстанавливают активность при действии шаперона DnaKJE. Однако люциферазы *A. fischeri* и *P. phosphoreum* ренатурируют значительно полнее (до 80-90% от исходного уровня), чем

люцифераза *A. logei* и ее мутантный вариант, для которых, как правило, уровень рефолдинга едва достигает 10-15%.

Сниженная способность люциферазы *A. logei* к рефолдингу по сравнению с люциферазой *A. fischeri*, которая имеет высокую схожесть аминокислотных остатков в активном центре фермента, не определяется также и межсубъединичным взаимодействием.

Как правило, ферменты психрофильных бактерий характеризуются повышенной активностью по сравнению с ферментами мезофильных бактерий. В частности, в работе [130] была показана зависимость скорости оборота фермента от термостабильности люциферазы. Наиболее высокая активность была зафиксирована у люциферазы из штамма *P. phosphoreum*. Однако согласно данным настоящей работы, люцифераза психрофильных бактерий вида *A. logei* по своим параметрам близка люциферазе мезофильных бактерий *A. fischeri*, но не люциферазе психрофильных бактерий *P. phosphoreum*.

Глава 5. Триггер Фактор-зависимый рефолдинг бактериальных люцифераз. 5.1. Основные характеристики Триггер Фактор-зависимого рефолдинга термоинактивированных люцифераз.

 $T\Phi_{Ec}$ - зависимый рефолдинг термоинактивированной люциферазы проводили *in vivo* в клетках *E. coli* PK202 *Adna*KJ14 *dks*A::*kan*, содержащих гибридные плазмиды с генами *lux*AB (pF2) и с геном *tig* (pTf16). В плазмиде pTf16 под контролем арабинозного промотора расположен ген *tig*, кодирующий TФ из мезофильных бактерий *E. coli* (T Φ_{Ec}).Бактерии росли при 28°C до середины экспоненциальной фазы, затем для ингибирования синтеза белка к суспензии клеток добавляли хлорамфеникол (167 мкг/мл), а для инактивации люциферазы клетки помещали в водяную баню (46°C, 5 мин). Рефолдинг инактивированной люциферазы проводили при температуре 23°C.

Рис. 26. Кинетика рефолдинга термоинактивированной люциферазы *A. fischeri* в клетках *Escherichia coli* PK202 *Δdna*KJ14 *dks*A::*kan*: (•) – PK202 (pF2); (■) – PK202 (pF2, pTf16); (▲) – PK202 (pF2, pKJE7). По оси ординат отложена активность люциферазы (в процентах от исходного уровня), по оси абсцисс – время рефолдинга люциферазы при 23°C.

На рис. 26 приведена зависимость степени ренатурации люциферазы *A. fischeri* (в % от исходного) от времени инкубации при 23°С. В клетках РК202 *Δdna*KJ14 *dks*A::*kan* в отсутствие плазмиды pTf16 рефолдинг люциферазы практически отсутствует (не более 1%). Однако при наличии в клетках плазмиды pTf16 с геном *tig*, кодирующим $T\Phi_{Ec}$, наблюдается эффективный рефолдинг (до 40% от исходного уровня). Для сравнения на рис. 26 представлена кинетическая кривая для DnaKJE-зависимого рефолдинга той же люциферазы (клетки *E. coli* PK202 содержат вместо pTf16 плазмиду pKJE7). Как видим, кинетические кривые $T\Phi_{Ec}$ - и DnaKJE - рефолдинга значительно различаются как по скорости восстановления нативной структуры белка (DnaKJE-рефолдинг осуществляется со значительно более высокой скоростью), так и по максимальному уровню рефолдинга (40% и 80-90% для $T\Phi_{Ec}$ - и DnaKJE - рефолдинга, соответственно). Значительные различия имеют место также при сравнении уровней $T\Phi_{Ec}$ - и DnaKJE - рефолдингов в зависимости от внутриклеточной концентрации шаперонов. Как было показано ранее, с увеличением концентрации шаперонов DnaKJE уровень рефолдинга быстро нарастает с последующим выходом кривой на плато [157]. На рис. 27 представлена зависимость максимального уровня $T\Phi_{Ec}$ рефолдинга термоинактивированной люциферазы *A. fischeri* от концентрации ангидротетрациклина – индуктора тетрациклинового промотора, под которым в плазмиде pG-Tf2 расположен ген *tig*, кодирующий $T\Phi_{Ec}$. Клетки *E. coli* PK202 *dna*KJ14 *dks*A::*kan* (pF2, pG-Tf2) росли при 28°C до середины экспоненциальной фазы, затем к суспензии клеток добавили различные концентрации ангидротетрациклина, далее клетки инкубировали еще 60 мин при 30°C. Для ингибирования синтеза белка к суспензии клеток добавляли хлорамфеникол (167 мкг/мл), а для инактивации люциферазы клетки помещали в водяную баню (46°C, 5 мин). Рефолдинг инактивированной люциферазы проводили при температуре 23°C.

Рис. 27. Зависимость максимального уровня ТФ_{*Ec*} - рефолдинга термоинактивированной люциферазы *A. fischeri* от концентрации ангидротетрациклина.

Как видим, с увеличением в среде концентрации индуктора (и соответственно, концентрации $T\Phi_{Ec}$ в клетке) уровень рефолдинга быстро снижается практически до нуля.

Как было показано ранее, эффективность DnaKJE- рефолдинга снижается при увеличении термостабильности белка-люциферазы. Термолабильные люциферазы *A. fischeri* и *P. leiognathi* ренатурируют значительно полнее (80-90 % от исходного уровня), чем термостабильные люциферазы *V. harveyi* (20-30 %) и *P. luminescens* (10 %) [35, 130]. На рис. 28 приведены кривые $T\Phi_{Ec}$ - рефолдинга различающихся по термостабильности люцифераз. Опыты проводили в штамме PK202, содержащем плазмиду pTf16 совместно с одной из ниже перечисленных плазмид с генами *lux*AB, кодирующими люциферазы с различной термочувствительностью, pF2 (*A. fischeri*), pLeo1 (*P. leiognathi*), pKLux (*V. harveyi*), pXen4 (*P. luminescens*). Согласно измерению констант скорости термоинактивации при 43,5°C люцифераза *A. fischeri* и *P. leiognathi* термолабильнее люцифераз *V. harveyi* и *P. luminescens* в 3,5 раза и в 15 раз, соответственно [145].

Рис. 28. Кинетика Т Φ_{Ec} - рефолдинга термоинактивированных люцифераз в клетках *E. coli* PK202 *dna*KJ14 *dks*A::kan (pTf16). (•) – *A. fischeri;* (•) – *P. leiognathi;* (•) – *V. harveyi;* (×) – *P. luminescens.*

Наблюдается аналогичная закономерность, что и в случае DnaKJE рефолдинга, т.е. с повышением термостабильности люциферазы уровень $T\Phi_{Ec}$ рефолдинга снижается, причем в варианте с наиболее термостабильной люциферазы *P. luminescens* уровень рефолдинга снижается практически до нуля.

 $T\Phi_{Ec}$ - рефолдинг можно фиксировать в клетках дикого типа, т.е. содержащих активную систему шаперонов DnaKJE. На рис. 29, а приведены кривые ренатурации люциферазы *A. fischeri* в отсутствие и в присутствии плазмиды pTf16 в клетках *E coli* SG20250 *dna*KJE⁺. В данном опыте использовали клетки, выросшие при 28°C до ранней экспоненциальной фазы, т.е. при условии, когда в клетке синтезируется небольшое количество белков-шаперонов системы DnaKJE. При этом условии в клетках в отсутствие гена *tig* максимальный уровень DnaKJE - рефолдинга достигает примерно 15% от исходного. Однако в присутствии плазмиды pTf16 максимальный уровень рефолдинга повышается до 30%, что превышает уровень DnaKJE - рефолдинга примерно в 2 раза.

Как известно, система DnaKJE действует в клетке в комплексе с шапероном ClpB (бишаперонная система DnaKJE-ClpB) [48]. Проведена оценка влияния шаперона ClpB на DnaKJE- и $T\Phi_{Ec}$ -рефолдинг. Для этого кинетику и уровень рефолдинга термоинактивированной люциферазы в клетках SG22100, мутантных по гену *clp*B (рис. 296).

Рис. 29. Кинетика рефолдинга термоинактивированной люциферазы *A. fischeri* в клетках *E. coli* (pF2): (a) SG20250 *dna*KJE⁺ *clp*B⁺, светлые символы – клетки без плазмиды pTf16, темные символы – клетки содержат плазмиду pTf16; (б) SG22100 *dna*KJ⁺ *clp*B⁻, светлые символы – клетки без плазмиды pTf16, темные символы – клетки содержат плазмиду pTf16; (в) светлые символы – рефолдинг в клетках штамма SG22100 *dna*KJ⁺ *clp*B⁻, темные символы – рефолдинг в клетках штамма SG2250 *dna*KJ⁺ *clp*B⁻, темные символы – рефолдинг в клетках штамма SG20250 *dna*KJ⁺ *clp*B⁺ (в данном варианте были использованы клетки, предварительно выдержанные при 42°C 30 мин без хлорамфеникола -

предварительный «тепловой шок» для увеличения количества DnaKJE-ClpB в

клетке).

Как видим, в отличие от системы DnaKJE, которой шаперон ClpB помогает проводить рефолдинг (90% при наличии белка ClpB, 6% - в отсутствии белка ClpB) (рис. 29, в), в случае $T\Phi_{Ec}$ - рефолдинга наличие в клетках шаперона ClpB снижает уровень рефолдинга (рис. 9, а). В клетках, мутантных по гену *clp*B, максимальный уровень $T\Phi_{Ec}$ - рефолдинга составляет 55%, (рис. 9, б), что примерно в 4 раза превышает уровень $T\Phi_{Ec}$ - рефолдинга в клетках *clpB*⁺ (15%).

5.2. Триггер Фактор осуществляет рефолдинг гетеродимерных, но не мономерных люцифераз.

Ранее в опытах *in vitro* было показано, что $T\Phi_{Ec}$ не проводит рефолдинг мономерной светлячковой люциферазы *Photinus pyralis*, предварительно обработанной 5 М мочевиной. Отметим, что шаперон DnaKJE, в отличие от $T\Phi_{Ec}$, проводит эффективный рефолдинг *in vitro* как термоинактивированной, так и обработанной 5М мочевиной светлячковой люциферазы [48, 155].

Было показано также, что Т Φ_{Ec} , повышает эффективность *in vitro* ренатурации денатурированной в 5М мочевине глицеральдегид-3-фосфат дегидрогеназы, которая в растворе формирует гомотетрамер [4, 113].

Исследована способность $T\Phi_{Ec}$ защищать люциферазу от термоинактивации. Проведено сравнение кинетики термоинактивации люциферазы *P. leiognathi* при 40°С в присутствии или в отсутствие $T\Phi_{Ec}$. Термоинактивация люциферазы проходит быстро (активность фермента понижается на порядок за 2 мин инкубации при 40°С) и не зависит от присутствия $T\Phi_{Ec}$ в различной концентрации. Следовательно, $T\Phi$ не защищает люциферазу от инактивирующего влияния термообработки.

В опытах *in vitro* по определению участия ТФ_{*Ec*} в рефолдинге термоинактивированных белков в настоящей работе (результаты получены в соавторстве с Мелькиной О.Е., Светловым М.С.) использовали двухкомпонентную систему (R+L), содержащую очищенную люциферазу *P. leiognathi*. Термоинактивацию люциферазы *P. leiognathi* проводили прогреванием при 43°С в течение 5 мин. в присутствии Т Φ_{Ec} или БСА. Инкубацию проб при рефолдинге проводили при 23°С. Для измерения активности фермента в аликвоту данной пробы добавляли равный объем буфера, содержащего 400 мкМ NADH, 100 мкМ FMN и *n*-деканаля. Измерение активности люциферазы проводили при комнатной температуре. Спонтанная реактивация термоинактивированной люциферазы фиксировалась на очень низком уровне, не более 1% от исходного уровня (рис.30, а).

Рис. 30. ТФ_{Ес}-зависимый рефолдинг *in vitro* бактериальной люциферазы *P. leiognathi* и светлячковой люциферазы *Photinus pyralis* как функция времени инкубации (*a*) и как функция концентрации ТФ_{Ес} (*б*). Ферментативная активность люциферазы отложена по оси ординат и выражена в процентах от исходного уровня. *1* – Бактериальная люцифераза *P. leiognathi* + ТФ_{Ес} (6 мкМ), *2* – светлячковая люцифераза *Photinus pyralis* + ТФ_{Ес} (6 мкМ), *3* – бактериальная люцифераза *P. leiognathi* + БСА (Результаты получены в соавторстве с Мелькина О.Е., Светлов М.С.)

В присутствии Т Φ_{Ec} наблюдался непрерывный процесс увеличения активности фермента, вплоть до 12-14% от исходного уровня через 60 мин инкубации при 23°С. Следовательно, Т Φ_{Ec} активно участвует в процессе восстановления активности (рефолдинге) термоинактивированной гетеродимерной ($\alpha\beta$) бактериальной люциферазы. На рис.30, б приведены данные о зависимости уровня рефолдинга термоинактивированной бактериальной люциферазы *P. leiognathi* от концентрации $T\Phi_{Ec}$. Как видим, уровень рефолдинга люциферазы с увеличением концентрации $T\Phi_{Ec}$ увеличивается, достигая максимума при 8-кратном молярном избытке $T\Phi_{Ec}$ над люциферазой. Однако $T\Phi_{Ec}$ не способствует также процессу рефолдинга *in vitro* термоинактивированной светлячковой люциферазы (рис. 30, а).

Кинетику DnaKJE - зависимого рефолдинга термоинактивированных люцифераз измеряли *in vivo* в клетках штамма *E. coli* MG1655 *tig*::Kan^r, содержащих гибридные плазмиды pF2, pLeo1 или pLR. Плазмиды pF2 и pLeo1 содержат гены *lux*AB, кодирующие α и β субъединицы бактериальных люцифераз *A. fischeri* и *P. leiognathi* под *lac* промотором, соответственно. Плазмида pLR содержит ген *luc*, кодирующий мономерную светлячковую люциферазу *L. mingrelica*. Бактерии росли при 28°C до середины экспоненциальной фазы и, после проведения предварительного «теплового шока» при 42°C в течение 30 мин (для наработки шаперонов DnaKJE и ClpB), для ингибирования синтеза белка к суспензии клеток добавляли хлорамфеникол (167 мкг/мл), а для инактивации люциферазы клетки помещали в водяную баню (46°C, 5 мин). Рефолдинг термоинактивированных люцифераз проводили при 23°C.

Рис. 31. DnaKJE - и TΦ_{Ec} - зависимые процессы рефолдинга термоинактивированных бактериальной и светлячковой люцифераз *in vivo. a* – DnaKJE-зависимый рефолдинг (*E. coli* MG1655 *tig*::*kan*); *б* – TΦ_{Ec} - зависимый
рефолдинг (E. coli PK202 dnaKJ14 dks∷kan). 1 – A. fischeri, 2 – P. leiognathi, 3 – L. mingrelica

Как можно видеть из данных, представленных на рис. 31, а, шаперон DnaKJE осуществляет примерно с равной и высокой (до 80-90% от исходного уровня) эффективностью рефолдинг как гетеродимерной бактериальной люциферазы, так и мономерной светлячковой люциферазы.

Измерение кинетики $T\Phi_{Ec}$ - зависимого рефолдинга термоинактивированных бактериальной и светлячковой люцифераз проводили *in vivo* в клетках штамма *E. coli* PK202 *dna*K14 *dna*J14 *dks*::Kan^r, содержащих плазмиду pTf16 с геном *tig*, расположенным под *ara*B промотором, а также одну из плазмид с генами *lux*AB (pF2, pLeo1) или с геном *luc* (pLR). Как видно из рис. 31, б, в отсутствие плазмиды pTf16 рефолдинг люцифераз практически отсутствует (не более 1% от исходного уровня). В присутствии плазмиды pTf16 наблюдается значительный рефолдинг бактериальных гетеродимерных люцифераз *A. fischeri* и *P. leiognathi*, достигающий 40% и 30% от исходного уровня, соответственно. Однако $T\Phi_{Ec}$ не способен проводить рефолдинг мономерной светлячковой люциферазы.

Так как светлячковая люцифераза имеет эукариотическое происхождение и значительно отличается по аминокислотной последовательности, пространственной структуре и ферментативной реакции от бактериальных люцифераз, то в следующей серии опытов нами были использованы гетеродимерная бактериальная люцифераза *Vibrio harveyi* (плазмида pKlux с генами *lux*AB) и специально сконструированная эта же люцифераза, но имеющая форму мономера (плазмида pT7-mut3). Для подтверждения того, что основные параметры, сконструированной люциферазы не отличаются от исходного варианта были произведены исследования по термочувствительности.

E. coli PK202 Δ*dna*KJ14 *dks*A::*kan* (pKlux) клетки выращены при 28°С до ранней логарифмической фазы роста. Синтез белка был ингибирован добавлением хлорамфеникола (167 мкг/мл).

73

Рис. 32. Термоинактивация люциферазы *Vibrio harveyi* и генно-инженерно мономерной версии ее же при 46°С. ■- мономерная форма люциферы *V. harveyi*

(pT7-mut3); ●- гетеродимерная форма люциферазы *V. harveyi* (pKlux). Представленные на рис. 32 данные по термоинактивации показывают, что по термочувствительности две формы люциферазы *V. harveyi* практически идентичны, также ранее было показано, что они имеют примерно равные уровни биолюминесценциии [146].

Проведение DnaKJE-зависимого рефолдинга термоинактивированных люцифераз *in vivo* в клетках штамма *E. coli* MG1655 *tig*::Kan^r, содержащих плазмиды pKlux или pT7-mut3, показало практически идентичные кинетику и уровень рефолдинга этих двух изоформ люциферазы *V. harveyi* (примерно 40% от исходного уровня) (рис. 33, а). На рис. 33, б представлены кинетические кривые $T\Phi_{Ec}$ - зависимого рефолдинга термоинактивированных изоформ люциферазы *V. harveyi*.

Рис. 33. DnaKJE- и ТФ_{Ес}-зависимые процессы рефолдинга
термоинактивированных бактериальной гетеродимерной (αβ) и мономерной форм люциферазы Vibrio harveyi in vivo. a – DnaKJE-зависимый рефолдинг (E. coli
MG1655 tig::kan); б – ТФ-зависимый рефолдинг (E. coli PK202 dnaKJ14 dks::kan).
1 – pKlux, 2 – pT7-mut3

5.3. Сравнение шаперонной активности ТФ из мезофильных и психрофильных бактерий.

Кинетику и уровень ТФ - зависимого рефолдинга термоинактивированных люцифераз измеряли в клетках *E. coli* PK202 *Даna*KJ14 *dks*A::*kan*, содержащих гибридные плазмиды с генами *lux*AB и с геном *tig* из мезофильных бактерий *E. coli* (плазмида pTf16) или из психрофильных бактерий *P. frigidicola* (плазмида p15aratighisPF). Бактерии росли при 28°C до середины экспоненциальной фазы, затем для ингибирования синтеза белка к суспензии клеток добавляли хлорамфеникол (167 мкг/мл), а для инактивации люциферазы клетки помещали в водяную баню (46°C, 5 мин). Рефолдинг инактивированной люциферазы проводили при температуре 23°C. На рис. 34, *a* представлена зависимость максимального уровня ТФ - рефолдинга термоинактивированной люциферазы *А. fischeri* (в % от исходного уровня) от концентрации арабинозы, индуктора

промотора *araBAD*. Плазмиды pTf16 и p15aratighisPF сконструированы на основе вектора pACYC184 и содержат гены *tig* мезофильных бактерий *E. coli* и психрофильных бактерий *P. frigidicola* под контролем промотора *araBAD*, соответственно.

Рис. 34, а. Зависимость максимального уровня ТФ - рефолдинга термоинактивированной люциферазы *P. leiognathi* от концентрации арабинозы, использованной для индукции: ▲ – ТФ_{Pf}; ■ – ТФ_{Ec}.

Время, мин.

Рис. 34, б. Рефолдинг термоинактивированной люциферазы *P. leiognathi* в клетках *E. coli* PK202 *dna*KJ14 *dks*A::*kan* экспрессирующих \blacksquare – $T\Phi_{Ec}$ (pLeo1, pTf16); \blacktriangle –

 $T\Phi_{Pf}$ (pLeo1, p15aratighisPF); ● – без $T\Phi$ (контроль (pLeo1).

В клетках РК202 Δdna КJ14 dksА::kan (pF2) в отсутствие плазмид pTf16 или p15aratighisPF рефолдинг люциферазы практически отсутствует (не более 1%). При наличии в клетках РК202 Δdna КJ14 dksА::kan (pF2) плазмиды pTf16 или p15aratighisPF имеет место восстановление активности термоинактивированной люциферазы, достигающее 20-30% от исходного уровня. Однако наблюдаются значительные различия при сравнении уровней $T\Phi_{Ec}$ - и $T\Phi_{Pf}$ -рефолдинга в зависимости от их внутриклеточной концентрации. В варианте с плазмидой p15aratighisPF с увеличением концентрации арабинозы и, соответственно, внутриклеточной концентрации шаперона $T\Phi_{Pf}$ уровень рефолдинга нарастает с последующим выходом кривой на плато. В варианте же с плазмидой pTf16 с увеличением в среде концентрации индуктора (и, соответственно, концентрации $T\Phi_{Ec}$ в клетке) уровень рефолдинга люциферазы быстро снижается практически до нуля (рис. 34, *a*).

На рис.34, б приведена зависимость степени ренатурации люциферазы *А. fischeri* (в % от исходного уровня) от времени инкубации при 22°С. При наличии в клетках плазмиды pTf16 с геном *tig E. coli*, кодирующим $T\Phi_{Ec}$ (клетки *E. coli* PK202 (pTf16, pF2) росли при 28°С до середины экспоненциальной фазы без арабинозы), наблюдается эффективный рефолдинг, достигающий в течение 120 мин. инкубации 25% от исходного уровня. Кинетическая кривая рефолдинга той же люциферазы, проводимого $T\Phi_{Pf}$ (клетки *E. coli* PK202 (p15aratighisPF, pF2) росли при 28°С до середины экспоненциальной фазы в присутствии 50 mM арабинозы). Как видим, кинетические кривые $T\Phi_{Ec}$ - и $T\Phi_{Pf}$ - зависимых рефолдингов практически не различаются как по скорости, так и по максимальному уровню рефолдинга.

Было показано, что при суперпродукции ТФ_{*Ec*} оказывает летальное действие на бактериальную клетку [106, 110]. На рис. 35 представлены кривые роста

бактерий *E. coli* PK202, содержащих плазмиды p15aratighisPF или pTf16, в зависимости от содержания арабинозы в среде.

Рис. 35. Кривая роста клеток штамма *E. coli* PK202 *Дана*KJ14 содержащих плазмиды, кодирующие $T\Phi_{Ec}$ или $T\Phi_{Pf}$ в присутствии или отсутствии Lарабинозы в среде LB при 30°C. *E. coli* PK202 без плазмиды: \circ – без L-арабинозы; • – 50 мМ L-арабиноза. *E. coli* PK202 pTF16: \Box – $T\Phi_{Ec}$, без L-арабиозы; \blacksquare – $T\Phi_{Ec}$, 50 мМ L-арабиноза. *E. coli* PK202 p15aratighisPF: \triangle – $T\Phi_{Pf}$, без L-арабиозы; \blacktriangle – $T\Phi_{Pf}$, 50 мМ L-арабиноза.

Как видим, в присутствии 50 mM арабинозы наблюдается практически полное ингибирование роста бактерий с плазмидой pTf16, кодирующей $T\Phi_{Ec}$, в то время как рост бактерий с плазмидой p15aratighisPF, кодирующей $T\Phi_{Pf}$, от концентрации арабинозы не зависит. $T\Phi_{Ec}$ в растворе формирует гомодимер, а $T\Phi_{Pf}$ остается мономерным при любой концентрации [113]. Следовательно, можно придти к выводу, что именно димерная форма $T\Phi$ определяет как снижение шаперонной активности, так и токсическое действие на клетку, проявляющиеся у $T\Phi_{Ec}$ при высоких концентрациях.

Эффективность DnaKJE - и $T\Phi_{Ec}$ - зависимого рефолдинга снижается при увеличении термостабильности белка-люциферазы [35; 130]. На рис. 36 приведены кинетические кривые $T\Phi_{Pf}$ - зависимой ренатурации люцифераз, различающихся по термостабильности. Опыты проводили в штамме PK202, содержащем плазмиду p15aratighisPF совместно с одной из ниже перечисленных плазмид с генами *lux*AB, кодирующими люциферазы с различной термочувствительностью, pPho1 (*P. phosphoreum*), pF2 (*A. fischeri*), pLeo1 (*P. leiognathi*), pKLux (*V. harveyi*), pXen4 (*P. luminescens*). Согласно измерению констант скорости термоинактивации - при 36°С люцифераза *P. phosphoreum* примерно в 10 раз термолабильнее люцифераз *A. fischeri* и *P. leiognathi*, а при 43,5°С люцифераза *A. fischeri* термолабильнее люцифераз *V. harveyi* и *P. luminescens* в 3,5 раза и в 15 раз, соответственно [130]. В случае ТФ_{Ес} рефолдинг термолабильных люцифераз *A. fischeri* и *P. leiognathi* проходит значительно полнее (30-40% от исходного уровня), чем термостабильных люциферазх *V. harveyi* (15%) и особенно *P. luminescens* (не более 1%). Предшествующая рефолдингу термоинактивацию люцифераз проводилась так: *P. phosphoreum*, *P. leiognathi* – 46°С, 5 мин; *V. harveyi* – 47°С, 15 мин; *P. luminescenes* – 48°С 15 мин. По оси ординат отложена активность люциферазы в процентах от исходного уровня. По оси абсцисс отложено время инкубации клеток при 22°С.

Время, мин.

Рис. 36. ТФ_{*Pf*} – зависимый рефолдинг термоинактивированных люцифераз в клетках *E. coli* PK202 (p15aratighisPF), содержащих одну из серии плазмид, кодирующих люциферазы различной термочувствительности: ● – *P. phosphoreum*

(pPho1); $\blacksquare - P$. leiognathi (pLeo1); $\blacklozenge - V$. harveyi (pKlux); $\blacktriangle - P$. luminescenes

(pXen4).

Как видно для шаперонной активности $T\Phi_{Pf}$ характерна аналогичная закономерность, что и в случае $T\Phi_{Ec}$, т.е. с повышением термостабильности люциферазы уровень рефолдинга снижается, причем в варианте с наиболее термолабильной люциферазой *P. phosphoreum* уровень $T\Phi_{Pf}$ - рефолдинга достигает 40-50%, а с наиболее термостабильной люциферазой *P. luminescens* снижается примерно до 1%.

Для определения влияния четвертичной структуры белка-субстрата на способность ТФ_{Рf} - проводить рефолдинг нами были использованы гетеродимерная бактериальная люцифераза *V. harveyi* (плазмида pKlux с генами *lux*AB) и специально сконструированная эта же люцифераза, но имеющая форму мономера (плазмида pT7-mut3). Клетки *E. coli* PK202 *dna*KJ14 *dks*A::*kan* (pKlux/pT7-mut3, pTf16) были выращены без добавления L-арабинозы, а к клеткам *E. coli* PK202 *dna*KJ14 *dks*A::*kan* (pKlux/pT7-mut3, p15aratighisPF) Lарабиноза конечной концентрации 50 мМ была добавлена.

Время рефолдинга, мин.

Рис. 37. ТФ - зависимый рефолдинг термоинактивированной бактериальной гетеродимерной (αβ) и мономерной форм люциферазы *V. harveyi*, проводимый в

клетках *E. coli* PK202 **•** - $T\Phi_{Ec}$ - зависиый рефолдинг гетеродимерной люциферазы *V. harveyi*; **•** - $T\Phi_{Ec}$ - зависимый рефолдинг мономерной люциферазы *V. harveyi*; **•** - $T\Phi_{Pf}$ - зависиый рефолдинг гетеродимерной люциферазы *V. harveyi*;

 \triangle - Т Φ_{Pf} – зависимый рефолдинг мономерной люциферазы *V. harveyi*.

На рис. 37 представлены кинетические кривые ТФ - зависимого рефолдинга термоинактивированных изоформ люциферазы *V. harveyi*. Как видим, как ТФ_{*Ec*} (формирующий в растворе димер), так и ТФ_{*Pf*} (в растворе находится исключительно в форме мономера) способствуют рефолдингу лишь

гетеродимерной люциферазы (до 15-20% от исходного уровня), и практически не эффективны в восстановлении активности мономерной формы этого же белка.

Шаперонная активность Т Φ_{Ec} увеличивается при отсутствии в клетках *E. coli* белка ClpB (рис. 29). Как видно из данных, представленных на рис. 38, подобная особенность характерна и для Т Φ_{Pf} .

Рис. 38. Влияние шаперона ClpB на ТФ_{Pf} - зависимый рефолдинг термоинактивированной люциферазы *P. leiognathi*. ромбы – клетки *E. coli* SG20250 *dnaKJ*⁺*clpB*⁺ (pLeo1); треугольники – клетки *E. coli* SG22100 *dnaKJ*⁺*clpB*::*kan* (pLeo1); светлые символы – клетки без плазмиды, темные символы – клетки содержат плазмиду, кодирующую ТФ_{Pf}.

Измерение кинетики и уровеня рефолдинга термоинактивированной люциферазы *P. leiognathi* в клетках *E. coli* SG22100, мутантных по гену *clp*B, показывает, что максимальный уровень $T\Phi_{Pf}$ - зависимого рефолдинга составляет 40%, в то время как в штамме *E. coli* SG20250 *clp*B⁺ максимальный уровень рефолдинга не превышает 15%.

5.4. Обсуждение результатов, полученных при изучении Триггер Факторзависимого рефолдинга бактериальных люцифераз.

В штамме PK202 Δdna KJ14 dksA::kan, в хромосоме которого содержится активный ген *tig*, уровень ТФ-рефолдинга термоинактивированной люциферазы *A. fischeri* составляет примерно 0,5-1,0%, что указывает на неспособность внутриклеточного ТФ вести эффективный рефолдинг. Количество молекул ТФ при этом превышает в 2-3 раза количество рибосом [27, 93]. Молекулы ТФ в цитоплазме клетки формируют комплексы с рибосомами, а также с цитоплазматическими белками, при этом участвуя не только в ко-трансляционном фолдинге полипептидной цепи на рибосоме, но и в пост-трансляционном процессе сохранения (стабилизации) нативной структуры белка [97]. Повидимому, количества молекул ТФ, образующихся в норме в процессе синтеза, недостаточно, чтобы способствовать эффективному рефолдингу, так как большая часть ТФ формирует комплексы с рибосомами. При введении в клетку плазмиды с *tig* геном количество ТФ увеличивается, одновременно увеличивается эффективность рефолдинга. Однако, что является характерным именно для ТФ из мезофильных бактерий E. coli, при последующим увеличении внутриклеточной концентрации $T\Phi_{Ec}$ имеет место значительное снижение уровня рефолдинга, что принципиально отличает шаперон Т Φ_{Ec} от шаперонов системы DnaKJE (при увеличении концентрации DnaKJE уровень рефолдинга достигает плато, и при дальнейшем увеличении концентрации не снижается [48]. Необходимо отметить, что увеличение концентрации $T\Phi_{Ec}$ в клетках *E. coli* примерно в четыре раза приводит к снижению их жизнеспособности и даже к гибели [106]. Согласно нашим данным увеличение концентрации ТФ_{Ес} в клетках штамма РК202 ∆dnaKJ14 dksA::kan сопровождается потерей жизнеспособности клеток одновременно с ослаблением рефолдинга.

О Необходимо отметить, что и в опытах *in vitro* ренатурирующая способность $T\Phi_{Ec}$, выделенного из клеток *E coli*, критична к концентрации шаперона: при концентрации выше оптимальной уровень рефолдинга

денатурированного при помощи 5М мочевины белка GAPDH значительно снижается [4, 113].

Можно предположить, что эти эффекты определяются особенностями четвертичной структуры Т Φ_{Ec} . При небольших концентрациях Т Φ_{Ec} в цитоплазме находится в форме мономера и проявляет активность в качестве шаперона, т.е. формирует комплекс с денатурированным белком, а затем высвобождает этот белок в нативной форме. При повышении концентрации ТФ_{Ес} образует димерную форму. В результате белки, связанные с Т Φ_{Ec} , не способны высвободиться из комплекса, что приводит к снижению эффективности рефолдинга. Если же в этих условиях с ТФ_{Ес} формируют комплексы белки, участвующие в процессе деления клетки, то имеет место ингибирование роста клеток. Было показано, что при высокой концентрации ТФ_{Ес} формирует комплекс с ключевым белком клеточного деления FtsZ [106]. Проведенный в настоящей работе анализ шаперонной активности $T\Phi_{Pf}$ из психрофильных бактерий *P. frigidicola*, который в растворе содержится исключительно в форме мономера, показал отсутствие снижения эффективности рефолдинга с увеличением его внутриклеточной концентрации. Кроме того, с увеличением внутриклеточной концентрации $T\Phi_{Pf}$ отсутствует и летальный эффект, характерный для $T\Phi_{Ec}$ из мезофильной бактерии *E. coli*. Следовательно, можно придти к выводу, что именно димерная форма ТФ определяет его токсическое действие на клетку, имеющее место при высокой концентрации. Необходимо отметить, что по другим параметрам: 1) неспособность проводить рефолдинг мономерной формы люциферазы, 2) снижение эффективности рефолдинга при увеличении термостабильности белкасубстрата, 3) повышение эффективности рефолдинга в мутантном штамме *E. coli* $clpB^{-}T\Phi_{Ec}$ из мезофильных бактерий *E. coli* и $T\Phi_{Pf}$ из психрофильных бактерий P. frigidicola практически не различаются.

Рис.39. Схематическое представление участия ТФ в сборке белков в цитоплазме бактерии *E. coli*.

Как видно из схемы (рис. 39), ТФ может находиться или в свободном состояния, или в комплексе с 50S субъединицей рибосомы. Синтезируемый белок формирует нативную форму или спонтанно (и затем с помощью шаперона DnaKJE и шаперонина GroELS), или с помощью ТФ. Свободный ТФ формирует комплексы с нативными белками в цитоплазме, предпочитая олигомерные формы белков и тем самым участвуя в сборке новых рибосом в клетке.

В бактериях *E. coli* процессы дезагрегации и рефолдинга белков связаны с активностью АТФ-зависимой бишаперонной системы DnaKJE-ClpB. Шаперон

СlpВ не участвует непосредственно в рефолдинге субстрата, он лишь способствует дезагрегации белков, особенно эта помощь эффективна при дезагрегации крупных агрегатов, которые система DnaKJE самостоятельно не способна разрушить [130]. Как следует из представленных данных, действие шаперона ClpB на систему DnaKJE и на шаперон ТФ противоположно. Если присутствие ClpB в клетке значительно увеличивает эффективность рефолдинга DnaKJE системы, то ТФ-рефолдинг снижается. Можно предположить, что шаперон ClpB конкурирует с ТФ за связь с субстратом, в отличие от шаперона DnaKJE, который действует в клетке в комплексе с шапероном ClpB (бишаперонная система DnaKJE-ClpB) [48].

Термическая инактивация бактериальных люцифераз ведет к открытой экспозиции гидрофобных эпитопов, с которыми специфически контактируют шапероны типа DnaKJE, что и определяет эффективный рефолдинг этих белков [35, 158-159]. Неспособность или очень низкая эффективность рефолдинга, характерная для ТФ при использовании в качестве субстрата мономерных форм люцифераз, указывает на дополнительную и, по-видимому, важную роль пространственной, а точнее, четвертичной структуры белка-субстрата для успешного контакта с ТФ. Это предположение находит подтверждение в данных, представленных в работе Martiznez-Hackert и Hendrickson [89], в которой показано, что в цитоплазме бактерий ТФ находится в комплексе с различными олигомерными белками и способствует стабилизации белков в димерной и олигомерной форме. Отметим также, что, как недавно было показано, ТФ не способствует фолдингу светлячковой люциферазы при ее синтезе [99]

Заключение

Анализ биолюминесцентных характеристик lux-оперонов мезофильных и психрофильных бактерий в гетерологичной системе показал, что штаммы *E. coli* с мутацией в гене, кодирующем шаперонины GroEL\GroES, характеризовались сниженным уровнем люминесценции по сравнению со штаммами дикого типа, и, наоборот, мутация по гену, кодирующему протеазу Lon, приводила к повышенному уровню биолюминесценции. Однако, несмотря на сходство в модуляции активности QS систем психрофильных A. logei и мезофильных *А. fischeri* бактерий шаперонинами семейства Hsp60 и протеазой Lon, оказалось, что имеются существенные различия, связанные с наличием двух копий регуляторного гена luxR у психрофильных бактерий. В частности показано, что шаперонины GroEL\GroES и протеаза Lon не участвуют в модуляции активности белка LuxR1 из психрофильных бактерий A. logei, в то же время, участвуют в контроле количеста и качества активных форм белка LuxR2. Белок LuxR из мезофильных бактерий A. fischeri также подвержен влиянию шаперонинов GroEL\GroES и протеазы Lon. В обоих случаях наблюдается эффект преодоления мутации за счет добавления АИ в больших концентрациях – увеличивается стабильность активаторов транскрипции. Однако в случае белка LuxR2 этот эффект преодолевается не полностью. По-видимому, белок LuxR2 ИЗ психрофильных бактерий A. logei менее стабилен, чем LuxR из мезофильных бактерий A. fischeri и, не успевая связаться с АИ, деградирует быстрее или, уже связав АИ и образовав димерную форму, сильнее подвержен инактивации. Влияние шаперонинов GroEL\GroES и протеазы Lon на экспрессию *lux*-оперона A. logei связано с тем, что основную роль в активации экспрессии играет LuxR2, а LuxR1 менее чувствителен к небольшим концентрациям АИ. На основе полученных данных можно сделать предположение, что LuxR1 необходим для активации генов *lux*-оперона в сложных стрессовых условиях, при которых LuxR2 не активен. Следует, однако, отметить, что в этом случае активация экспрессии генов *lux*-оперона возможна лишь при высоких концентрациях АИ (10⁻⁵ – 10⁻⁶ M).

Исследование влияния шаперонов на активность структурных генов luxгены *lux*-оперона, кодирующие оперона. Структурные люциферазу ИЗ психрофильных бактерий A. logei гомологичны генам luxAB мезофильных бактерий A. fischeri, а кодируемая этими генами люцифераза примерно равна по термостабильности люциферазе мезофильных бактерий A. fischeri. Однако люцифераза A. logei имеет значительно сниженный по сравнению с люциферазой A. fischeri DnaKJE рефолдинга. Поэтому уровень зависимого при термоденатурации психрофильных люцифераз *in vivo* (в штаммах *E. coli dnaKJE*⁺) биолюминесценции клеток интенсивность спалает быстрее. чем при термоденатурации мезофильных люцифераз.

Рефолдинг термоинактивированных люцифераз проводимый ТФ мезофильных и психрофильных бактерий характеризуется примерно равными параметрами: скоростью реакции и максимальным уровнем рефолдинга. Однако по этим характеристикам ТФ - рефолдинг значительно уступает DnaKJE - рефолдингу. При увеличении концентрации психрофильного ТФ_Р уровень рефолдинга термоинактивированных люцифераз увеличивается с выходом на плато. Напротив, повышение концентрации мезофильного ТФ_{Ес} приводит к резкому спаду максимального уровня рефолдинга, а появление в клетках мутантных по шаперонам Hsp70 (*E. coli* $\Delta dnaKJ$) большого количества Т Φ_{Ec} приводит к сильному снижению их жизнеспособности. Показано, что эффективность ТФ_{Ес} - и ТФ_{Рf} - зависимого рефолдинга снижается при увеличении термостабильности используемой в качестве субстрата люциферазы. Этот результат согласуется с полученными ранее данными об эффективности DnaKJ - зависимого рефолдинга, и объясняется тем, что, по-видимому, у более термостабильных белков более высокая способность образовывать необратимые агрегаты.

Отсутствие в клетках шаперона ClpB (Hsp100) повышает уровень рефолдинга проводимого как мезофильным так и психрофильным ТФ, в отличие от системы DnaKJE, которой шаперон ClpB помогает проводить рефолдинг (бишаперонная система DnaKJE-ClpB).

Показано, что $T\Phi_{Ec}$ и $T\Phi_{Pf}$ проводят рефолдинг только гетеродимерных люцифераз. $T\Phi_{Ec}$ и $T\Phi_{Pf}$ не способны рефолдировать термоинактивированные мономерные формы: светлячковую и специально сконструированную, слитую из двух субъединиц, бактериальную люциферазу *V. harveyi*. Шаперон DnaKJE проводит рефолдинг как мономерной, так и димерной форм люцифераз с равной эффективностью.

Полученные данные о работе системы клеточных шаперонов суммированы на рис. 40.

Рис. 40. Схема участия шаперонов бактериальной клетки АТФ - зависимых: DnaKJE, GroELS, ClpB, HptG – и АТФ - независимых: ТФ и IbpAB – в фолдинге, рефолдинге и дезагрегации белков. 1 – вновь синтезированные полипептидные цепи взаимодействуют с ТФ, освобождаясь из рибосомального туннеля, остаются несвернутыми; 2 – часть подобных полипептидных цепей не требует участия шаперонов для спонтанного сворачивания в нативную конформацию; 3 – часть белков формируют нативную форму при участии шаперона Hsp70 (DnaK), с кофактором Hsp40 (DnaJ) и фактором нуклеотидного обмена Hsp10 (GrpE); 4 – спонтанное образование частично свернутой конформации; 5 – связывание с DnaKJE и переход в нативную форму; 6 – связь с ТФ для повторения цикла фолдинга, до тех пор пока нативное состояние не будет достигнуто; 7 – взаимодействие с GroEL\ES для проведения полного фолдинга белка до нативной конформации; 8 – под воздействием теплового стресса происходит частичное разворачивание термолабильных белков, вызывающее экспозицию подверженных агрегации гидрофобных эпитопов; 9 – частично свернутый белок может агрегировать, при этом sHsp (IbpA, IbpB) действуют как «удерживатели» частично развернутых белков и перемещаются к шаперонам Hsp70 и Hsp60; 10 – дезагрегацию развернутых и агрегированных белков проводит Hsp100 (ClpB), действуя совместно с Hsp70.

Рекомендации и перспективы дальнейшего исследования. В дальнейшем предполагается, используя полученные биосенсорные штаммы с люциферазой в поиск наиболее репортёра, провести активных TΦ. качестве вариантов Планируется проведение исследований активности ТФ из A.logei и других психрофильных микроорганизмов. Полученные в диссертационной работе штаммы с высоким уровнем продукции ТФ планируется использовать для исследования способности ТΦ дезагрегации амилоидоподобных К надмолекулярных структур.

Проведенное в диссертационной работе исследование о влиянии шаперонов и протеаз на активность активаторов транскрипции систем QS (белки LuxR, LuxR1 и LuxR2) предполагается использовать для конструирования высокочувствительных к АИ *lux*-биосенсоров.

Перспективным представляется изучение механизмов рефолдинга денатурированных белков с применением разнообразных моделей биосенсорных штаммов, разработанных в ходе выполнения диссертационной работы.

90

Выводы:

- 1. Шаперонины GroEL\GroES и протеаза Lon не участвуют в модуляции активности белка LuxR1 из психрофильных бактерий *A. logei*.
- 2. Шаперонины GroELS и протеаза Lon участвуют в контроле количеста и качества активных форм как белков LuxR2 из психрофильных бактерий *A. logei*, так и LuxR из мезофильных бактерий *A. fischeri*. В обоих случаях наблюдается эффект добавления АИ в большой концентрации: увеличивается стабильность активаторов транскрипции (LuxR, LuxR2), и снижается эффект отсутствия шаперонина GroEL\GroES или присутствия протеазы Lon, однако в случае белка LuxR2 этот эффект не компенсируется полностью.
- Люцифераза из психрофильной бактерии A. logei по термостабильности идентична люциферазе мезофильных бактерий A. fischeri. Однако люцифераза A. logei характеризуется сниженным, по сравнению с люциферазой A. fischeri, уровнем DnaKJE - зависимого рефолдинга.
- 4. Процессы восстановления нативной структуры (рефолдинг) термоинактивированных люцифераз с участием ТФ из мезофильных и психрофильных бактерий как по скорости реакции, так и по максимальному уровню рефолдинга практически идентичны. DnaKJE -рефолдинг термоинактивированных люцифераз осуществляется со значительно более высокой скоростью и достигает существенно более высокого уровня (до 90% от начального уровня).
- 5. С увеличением концентрации психрофильного ТФ (ТФ_{Pf}) максимальный уровень рефолдинга термоинактивированных люцифераз вырастает и достигает плато. Повышение же концентрации мезофильного ТФ (ТФ_{Ec}) приводит к резкому спаду максимального уровня рефолдинга.
- В клетках *E. coli* с мутацией *ΔdnaKJ* появление большого количества ТФ_{Ec} приводит к снижению их жизнеспособности.

- 7. Эффективность $T\Phi_{Ec}$ и $T\Phi_{Pf}$ зависимого рефолдинга термоинактивированных люцифераз снижается при увеличении термостабильности используемой в качестве субстрата люциферазы.
- Отсутствие в клетках шаперона ClpB (Hsp100) повышает уровень рефолдинга, проводимого как мезофильным, так и психрофильным ТФ, в отличие от системы DnaKJE, которая формирует с шапероном ClpB эффективную бишаперонную систему.
- 9. ТФ как из мезофильных бактерий *E. coli* так и из психрофильных бактерий *P. frigidicola* не проводит рефолдинг мономерных форм люцифераз.

Список литературы

- Gragerov, A.I. Protein aggregation and inclusion body formation in *Escherichia coli* rpoH mutant defective in heat shock protein induction. / A. I. Gragerov,
 E. S. Martin, M. A. Krupenko, M. V. Kashlev, V. G. Nikiforov // FEBS Lett. 1991. V.291. № 2. P. 222-224.
- Hartl, F.U. Molecular chaperones in cellular protein folding. / F. U. Hartl // Nature. – 1996. – V. 381. – P. 571-570.
- Tomoyasu, T. Genetic dissection of the roles of chaperones and proteases in protein folding and degradation in *Escherichia coli* cytosol. / T. Tomoyasu,
 A. Mogk, H. Langen, P. Goloubinoff, B. Bukau // Molecular. Microbiol. 2001. 40. P. 397-413.
- Liu, C. P. Dimeric trigger factor stably binds folding-competent intermediates and cooperates with the DnaK-DnaJ-GrpE chaperone system to allow refolding. / C. P. Liu, S. Perrett, J. M. Zhou // J. Biol. Chem. – 2005. – V. 280. – P. 13315-13320.
- Saibil, H. Chaperone machines for protein folding, unfolding and disaggregation.
 / H. Saibil // Nat. Rev Mol. Cell. Biol. 2013. V. 14. P. 530-642
- Schultz, T. The evaluation of the factors that cause aggregation during recombinant expression in *E. coli* is simplified by the employment of an aggregation-sensitive reporter. / T. Schultz, L. Martinez, A. de Marco // Microbial Cell Factories.– 2006.– V.5.– P.28–36;
- De Marco, A. Chaperone-based procedure to increase yields of soluble recombinant proteins produced in *E. coli*. / A. De Marco, E. Deuerling, A. Mogk, T. Tomoyasu, B. Bukau // BMC Biotechnol. – 2007. – V .7. – P. 32–40.
- De Marco, A. Protocol for preparing proteins with improved solubility by coexpressing with molecular chaperones in *Escherichia coli* / A. De Marco // Nature Protocols. – 2007. – V. 2. – № 10. – P. 2632-2639;
- Nicoll, W.S. Approaches to the isolation and characterization of molecular chaperones. / W.S. Nicoll, A. Boshoff, M. H. Ludewig, F. Hennessy, M. Jung, G. Blatch //Protein Expression and Purification. – 2006. – V.46. – P. 1-15.

- 10.Kolaj, O. Use of folding modulators to improve heterologous protein production in Escherichia coli. / O. Kolaj, S. Spada, S. Robin, J. G. Wall // Microb. Cell Fact. - 2009. - V. 8. - P. 9-26.
- 11.Doglia, S. M. Recruiting unfoling chaperones to solubilize misfolded recombinant proteins. / S. M. Doglia, Marina Lotti, R. U. H. Mattoo,
 P. Goloubinoff // Protein Aggregation in Bacteria: Functional and Structural Properties of Inclusion Bodies in Bacterial Cells. – 2014. – P. 63-75
- 12. Anfinsen, C. B. Principles that govern the folding of protein chains. /
 C. B. Anfinsen // Science. 1973. V.-181. № 4096. 223-230.
- 13.Ellis, R. J. Macromolecular crowding: obvious but underappreciated. / R. J. Ellis // Trends Biochem. Sci. 2001.–V. 26. –P. 597-604.
- 14.Zimmerman, S. B. Estimation of macromolecule concentrations and excluded volume effects for the cytoplasm of *Escherichia coli*. / S. B. Zimmerman, S. O. Trach // J. Mol. Biol. 1991. –V. 222. –P. 599-604.
- 15.Chen, B. Cellular strategies of protein quality control. / B. Chen., M. Retzlaff,
 T. Roos, and J. Frydman // Cold Spring Harbor Perspect. Biol. 2011. –
 3,a004374;
- 16. Tyedmers, J. Cellular strategies for controlling protein aggregation. /
 J. Tyedmers, A. Mogk, B. Bukau // Nature Rev. Mol. Cell Biol. 2010. V. 11.
 –P. 777-788.
- 17.Hartl, F.U. Molecular chaperonesin protein folding and proteostasis. / F. U. Hartl,
 A. Bracher, M. Hayer-Hartl // Nature. 2011. V. 475. № 7356. P. 324-332.
- 18.Doyle, S. Protein rescue from aggregates by powerful molecular chaperone machines. / S. Doyle, O. Genest, S. Wickner //Nature Rev. Mol. Cell. Biol. – 2013. – № 14. – P. 617-629.
- 19. Mattoo, R. U. H. Molecular chaperones are nanomachines that catalytically unfold misfolded and alternatively folded proteins. / R. U. H. Mattoo,
 P. Goloubinoff // Cell. Mol. Life Sci. 2014. –V. 71. P. 3311-25

- 20.Sharma, S.K. Disaggregating chaperones: an Unfolding story. / S. K. Sharma,
 P. Chrimten, P. Goloubinoff // Current Protein and Peptide Science. 2009. –
 V. 10. P. 432-446.
- 21.Priya, S. Molecular chaperones as enzymes that catalytically unfold misfolded polypeptides. / S. Priya, S. K. Sharma, P. Goloubinoff //FEBS Lett. 2013. V. 587. P.1981-1987.
- 22. Rosenzweig, R. Unraveling the mechanism of protein disaggregation through a ClpB-DnaK interaction. / R. Rosenzweig, S. Moradi, A. Zarrine-Afsar, J. R. Glover, L. E. Kay // Science. 2013. V. 339. P. 1080-1083.
- 23.Castanie-Cornet, M.P. Chaperone networking facilitates protein targeting to the bacterial cytoplasmic membrane. / M.P. Castanie-Cornet, N. Bruel, P. Genevaux // Biochim. Biophys. Acta. 2013. V. 1843. P. 1142-56.
- 24. Calloni, G. DnaK functions as a central Hub in the E. coli chaperone network. / G. Calloni, T. Chen, S. Schermann, H-Ch. Chang, P. Genevaux, F. Agostini, G. G. Tartaglia, M. Hayer-Hartl, F.U. Hartl // Cell Reports. 2012. V. 1. P. 251-264.
- 25.Liberek, K. Chaperones in control of protein disaggregation. / K. Liberek,
 A. Lewandowska, S. Zietkiewicz // EMBO J. 2008. V. 27. P. 328-335.
- 26.Мельников, Э. Э. Молекулярные шапероны / Э. Э. Мельников, Т. В. Ротанова // Биоорганическая химия.– 2010. – Т.36.– № 1.– С. 5-14.
- 27.Lill, R. The "trigger factor cycle" induces ribosomes, presecretory proteins, and the plasma membrane. / R. Lill, E. Crooke, B. Guthrie, W. Wickner // Cell. 1988. V. 54. P. 1013-1018.
- 28.Hoffmann, A. Structure and function of the molecular chaperone Trigger Factor. / A. Hoffmann, B. Bukau, G. Kramer // Biochim. Biophys. Acta. – 2010. – V. 1803. – P. 650-661.
- 29.Calloni, G. DnaK Functions as a Central Hub in the *E. coli* Chaperone Network. / G. Calloni, T. Chen, S. M. Schermann, H. Chang, P. Genevaux, F. Agostini, G. G. Tartaglia, M. Hayer-Hartl, F. U. Hartl // Cell Report. 2012. V. 1. P. 251-264.

- 30.Sharma, S. K. The kinetic parameters and energy cost of the Hsp70 chaperone as a polypeptide unfoldase. / S. K. Sharma, P. De Los Rios, P. Christen, A. Lustig, P. Goloubinoff // Nat. Chem. Biol. 2010. V. 6. № 12. P. 914-920.
- 31. Tatsuta, T. Evidence for an active role of the DnaK chaperone system in the degradation of σ³². / T. Tatsuta, D. M. Joo, R. Calendar, Y. Akiyama, T. Ogura // FEBS Lett. 2000. –V. 478.–P. 271-275
- 32.Smock, R.G. Conserved, Disordered C Terminus of DnaK Enhances Cellular Survival upon Stress and DnaK *in vitro* Chaperone Activity. / R.G. Smock,
 M. E. Blackburn, L. M. Gierasch // JBC. – 2011. – V. 286. – P. 31821-31829.
- 33.Cyr, D.M. DnaJ-like proteins: molecular chaperones and specific regulators of Hsp70. / D. M. Cyr, T. Langer, M. G. Douglas // Trends Biochem. Sci. – 1994. – V. 19. – P. 176-181.
- 34.Mayer, M. P. Gymnastics of molecular chaperones. / M. P. Mayer // Mol. Cell. 2010.–V. 39.– P. 321-331.
- 35.Manukhov, I. V. Folding and refolding of thermolabile and thermostable bacterial luciferases: the role of DnaKJ heat shock proteins. / I. V. Manukhov,
 G. E. Eroshnikov, M. Y. Vyssokikh, G. B. Zavilgelsky //FEBS Lett. 1999. –
 V. 448.– P. 265-268
- 36.Raviol, H. Chaperone network in the yeast cytosol: Hsp110 is revealed as an Hsp70 nucleotide exchange factor. / H. Raviol, H. Sadish, F. Rodriguez, M. P. Mayer, B. Bukau // EMBO J. 2006. V. 25. P. 2510 2518
- 37.Zhuravleva, A. Allosteric signal transmission in the nucleotide-binding domain of 70-kDa heat shock protein (Hsp70) molecular chaperones. / A. Zhuravleva, L.M.Gierasch // PNAS. 2011. V. 108. P. 6987-6982.
- 38.Harrison, C. J. Crystal structure of the nucleotide exchange factor GrpE bound to the *ATPase* domain of the molecular chaperone DnaK. / C. J. Harrison, M. Hayer-Hartl, M. Di Liberto, F. Hartl, J. Kuriyan // Science. 1997. V. 276. P. 431-435.
- 39.Brehmer, D. Tuning of Hsp70 chaperone activity by modulation of nucleotide exchange. / D. Brehmer, S. Ruediger, C. S. Gässler, D. Klostermeier,

L. Packschies, J. Reinstein, M. P. Mayer, B. Bukau // Nat.Struct. Biol. – 2001. – V. 8. – P. 427-432.

- 40. Taipale, M. Hsp90 at the hub protein homeostasis: emerging mechanistic insights.
 / M. Taipale, D. F. Jarosz, S. Lindquist // Nat. Rev. Mol. Cell. 2010. –V. 11. –
 P. 515-528.
- 41.Johnson, J. L. Evolution and function of diverse of Hsp90 homologs and cochaperone proteins. / J. L. Johnson // Biochim. Biophys. Acta. 2012. V. 1823. P. 607-613.
- 42.Genest, O Heat shock protein 90 from Escherichia coli collaborates with the DnaK chaperone system in client protein remodeling. / O. Genest, J. R. Hoskins, J. L. Camberg, S. M. Doyle, S. Wickner // PNAS USA. 2011. V. 108. P. 8206-8211.
- 43.Genest, O. Uncovering a region of Hsp90 important for client binding in *E. coli* and chaperone function in yeast ./ O. Genest, M. Reidy, T. O. Street, J. R. Hoskins, J. L. Camberg, D. A. Agard, D. C. Masison, S. Wickner // Mol. Cell. 2013. V. 49. P. 464-473.
- 44.Nakamoto, H. Physical interaction between bacterial heat shock protein (Hsp) 90 and Hsp70 chaperones mediates their cooperative action to refold denatured proteins. / H. Nakamoto, K. Fujita, A. Ohtaki, S. Watanabe, S. Narumi, T. Maruyama, E. Suenaga, T. S. Misono, P. K.Kumar, P. Goloubinoff, H. Yoshikawa // J. Biol. Chem. 2014. V. 289. –P. 6110-6119.
- 45.Ali, M. M. Crystal structure of an Hsp90-nucleotide-p23/Sba1 closed chaperone complex. / M. M. Ali, S. M. Roe, C. K. Vaughan, P. Meyer, B. Panaretou, P. W. Piper, C. Prodromou, L. H. Pearl // Nature. 2006. V.440. P.1013-1017.
- 46.Ben-Zvi, A.P. Review: mechanism of disaggregation and refolding of stable protein aggregates by molecular chaperones. / A. P. Ben-Zvi, P. Goloubinoff // J. Struct Biol. 2001.–V. 135. P. 84-93.
- 47.Mogk, A. Identification of thermolabile Escherichia coli proteins: prevention and reversion of aggregation by DnaK and ClpB. / A. Mogk, T. Tomoyasa,

P. Goloubinoff, S. Rudiger, D. Roder, H. Langen, B. Bukau // EMBO J. – 1999. –
V. 18. – P. 6934-6949.

- 48.Goloubinoff, P. Sequential mechanism of solubilization and refolding of stable protein aggregates by a bichaperone network. / P. Goloubinoff, A. Mogk,
 A. P. Ben-Zvi, T. Tomoyasu, B. Bukau // Proc. Natl. Acad. Sci. 1999. V. 96. P. 13732-13737.
- 49.Diamant, S. Size-dependent disaggregation of stable protein aggregates by the DnaK chaperone machinery. / S. Diamant, A. P. Ben-Zvi, B. Bukau,
 P. Goloubinoff // J. Biol. Chem.– 2000.– V. 275.–P. 21107-21113.
- 50. Vale, R. D. AAA proteins. Lords of the ring. / R. D. Vale //J. Cell. Biol. 2000. V. 150. – F13-F19.
- 51.Ammelburg, M. Classification of AAA+ proteins. / M. Ammelburg, T. Frickey,
 A. N. Lupas // J. Struct. Biol. 2006.–V. 156. P. 2-11.
- 52.Lee, S. The structure of ClpB: a molecular chaperone that rescues proteins from an aggregated state. / S. Lee, M. E. Sowa, Y. H. Watanabe, P. B. Sigler, W. Chiu, M. Yoshida, F. T. Tsai // Cell. 2003. V. 115. P. 229-240.
- 53.Lee, S. Visualizing the ATPase cycle in a protein disaggregating machine: structural basis for substrate binding by ClpB. / S. Lee, J.M. Choi, F.T. Tsai // Mol. Cell. – 2007. – V. 25.–P. 261-271.
- 54. Hoskins, J. R. The role of the ClpA chaperone in proteolysis by ClpAP. /
 J. R. Hoskins, M. Pak, M. R. Maurizi, S. Wickner // Proc. Natl. Acad. Sci. –1998.
 V. 95. P. 12135-12140.
- 55. Weber-Ban, E.-U. Global unfolding of substrate protein by the Hsp100 chaperone ClpA. / E.-U. Weber-Ban, B. G. Reid, A. D. Miranker, A. L. Horwich // Nature. – 1999. – V. 401.–P. 90-93.
- 56.Hoskins, J. R. Protein binding and unfolding by the chaperone ClpA and degradation by the protease ClpAP. / J.R. Hoskins, S.K. Singh, M. R. Maurizi, S. Wickner // Proc. Natl. Acad. Sci.-2000. -V. 97. - P. 8892-8897.

- 57.Ortega, J. ClpA and ClpX ATPases bind simultaneously to opposite ends of ClpP peptidase to form active hybrid complexes. / J. Ortega, H. S. Lee, M. R. Maurizi, A. C. Steven //J. Struct. Biol. 2004. V.146.–P. 217-226.
- 58.Hoskins, J. R. ClpAP and ClpXP degrade proteins with tags located in the interior of the primary sequence. / J.R. Hoskins, K. Yanagihara, K. Mizuuchi, S. Wickner // Proc. Natl. Acad. Sci. – 2002. – V. 99. – P. 11037-11042.
- 59. Ishikawa, T. The N-terminal substrate-binding domain of ClpA unfoldase is highly mobile and extends axially from the distal surface of ClpAP protease. / T. Ishikawa, M. R. Maurizi, A. C. Steven // J. Struct. Biol. 2004. V. 146. P. 180-188.
- 60.Prakash, S. Protein unfolding in the cell. / S. Prakash, A. Matouschek // Trends in Biochem. Sci. – 2004. – V. 29. – P. 593-600.
- 61. Wickner, S. A. Molecular chaperone, ClpA, functions like DnaK and DnaJ. /
 S. Wickner, S. Gottesman, D. Skowyra, J. Hoskins, K. McKenney, M. R. Maurizi
 // Proc. Natl. Acad. Sci. 1994. V. 91. P. 12218-12222.
- 62. Dougan, D. A. ClpS, a substrate modulator of the ClpAP machine. /
 D.A. Dougan, B. G. Reid, A.L. Horwich, B. Bukau // Mol. Cell. 2002. V. 9. –
 P. 673-683.
- 63.Georgopoulos, C. P. Host participation in bacycriophage lambda head assembly. /
 C. P. Georgopoulos, R. W. Hendrix, R. Casjens, A.D. Kaiser // J. Mol. Biol. –
 1973. V. 76. P 45-60.
- 64.Fayet, O. The groES and groEL heat shock gene products of *Escherichia coli* are essential for bacterial growth at all temperatures. / O. Fayet, T. Ziegelhoffer, C. Georgopoulos // J. Bacteriol. 1989. V. 171. P.1379-1385.
- 65.Goloubinoff, P. GroE heat-shock proteins promote assembly of foreign procaryotic ribulose biphosphate carboxylase oligomers in *Escherichia coli*. / P. Goloubinoff, A. A. Gatenby, G. H. Lorimer // Nature. 989. V. 337. № 6202. P. 44-47.
- 66.Langer, T. Chaperonin-mediated protein folding GroES binds to one end of the GroEL cylinder, which accommodates the protein substrate within its central

cavity. / T. Langer, G. Pfeifer, J. Martin, W. Baumeister, F. U. Hartl // EMBO J. - 1992. - V. 11. - P. 4757-4765.

- 67. Weissman, J. S. Mechanism of GroEL action: productive release of polypeptide from a sequestered position under GroES. / J. S. Weissman, C. Hohl,
 O. Kovalenko, Y. Kashi, S. Chen, K. Braig, H.R. Saibil, W.A. Fenton,
 A. L. Horwich // Cell. 1995. V. 83. P. 577-587.
- 68.Hartl, F. U. Molecular chaperones in the cytosol: from nascent chain to folded protein. / F. U. Hartl, M. Hayer-Hartl // Science. – 2002. – V. 295. – P. 1852-1858.
- 69. Tang, Y. C. Structural features of the GroEL-GroES nano-cage required for rapid folding of encapsulated protein. / Y. C. Tang, H. C. Chang, A. Roeben,
 D. Wischnewski, N. Wischnewski, M. J. Kerner, F. U. Hartl, M. Hayer-Hartl // Cell. 2006. V. 125. P. 903-914.
- 70.Lin, Z. GroEL stimulates protein folding through forced unfolding. / Z. Lin,
 D. Madan, H. S. Rye // Nat. Struct. Mol. Biol. 2008. V. 15. P. 303-311.
- 71.Horwich, A. L. Chaperonin-mediated protein folding: using a central cavity to kinetically assist polypeptide chain folding. / A. L. Horwich, W. A. Fenton // Q. Rev. Biophys. -2009. V. 42. P.83-116.
- 72. Jewett A.I., Reconciling theories of chaperonin accelerated folding with experimental evidence. / A. I. Jewett, J. E. Shea // Cell. Mol. Life Sci. 2010. V.67. P. 255-276.
- 73.Nojima, T. Flexibility of GroES mobile loop is required for efficient chaperonin function. / T. Nojima, T. Ikegami, H. Taguchi, M. Yoshida //J. Mol. Biol. 2012.
 -V. 422. P. 291-299.
- 74.Saibil, H. R. Structure and allostery of the chaperonin GroEL. / H. R. Saibil,
 W. A. Fenton, D. K. Clare, A. L. Horwich //J. Mol. Biol. 2013, V.425 P. 1476-1487.
- 75.Fu, X. Chaperone function and mechanism of small heat-shock proteins. / X. Fu // Acta Biochim. Biophys. Sin. – 2014.–V. 46. – P. 347-356.

- 76. Allen, S.P. Two novel heat shock genes encoding proteins produced in response to heterologous protein expression in *Escherichia coli*. / S. P Allen, J. O. Polazzi, J. K. Gierse, A. M. Easton // J. Bacteriol. 1992.–V. 174.–P. 6938-6947.
- 77.Haslbeck, M. Some like it hot: the structure and function of small heat-shock proteins. / M. Haslbeck, T. Franzmann, D. Weinfurtner, J. Buchner // Nat. Struct. Mol. Biol. 2005. V. 12. P. 842-846.
- 78.Bissonnette, S.A. The IbpA and IbpB small heat-shock proteins are substrates of the AAA+ Lon protease. / S. A. Bissonnette, I. Rivera-Rivera, R. T. Sauer, T. A. Baker //Mol. Microbiol. 2010. V. 75. P. 1530-1549.
- 79.Laskowska, E. IbpA and IbpB, the new heat-shock proteins, bind to endogenous *Escherichia coli* proteins aggregated intracellularly by heat shock. /
 E. Laskowska, A. Wawzynow, A. Taylor // Biochimie. 1996. V. 78. P. 117-122.
- 80.Kuczynska-Wisnik, D. The *Escherichia coli* small heat-shock proteins IbpA and IbpB prevent the aggregation of endogenous peoteins denatured *in vivo* during extreme heat shock. / D. Kuczynska-Wisnik, S. Kedzierska, E. Matuszewska, P. Lind, A. Taylor, B. Lipinska, E. Laskowska // Microbiology. 2002. V. 148. P. 1757-1765.
- 81.Mogk, A. Small heat shock proteins, ClpB and the DnaK system form a functional trade in reversing protein aggregation. / A. Mogk, E. Deuerling,
 S. Vorderwwulbecke, E. Vierling, B. Bukau // Molecular Microbiol.– 2003. V. 50.–P. 585-595.
- 82.Mogk, A. Refolding of substrates bound to small Hsps relies on a disaggregation reaction mediated most efficiently by ClpB/DnaK. / A. Mogk, C. Schlieker, K. L. Friedrich, H-J. Schonfeld, E. Vierling, B. Bukau // J. Biol. Chem. 2003. V. 278. –P. 31033-31042.
- 83.Ratajczak, E. Distinct activities of *Escherichia coli* small heat shock proteins IbpA and IbpB promote efficient protein disaggregation. / E. Ratajczak, S. Zietkiewicz, K. Liberek // Mol. Biol. – 2009. – V. 386. – P. 178-189.

- 84. Veinger, L. The small heat-shock protein IbpB from *Escherichia coli* stabilizes stress-denatured proteins for subsequent refolding by a multichaperone network./
 L. Veinger, S. Diamant, J. Buchner, P. Goloubinoff //JBC.- 1998. V. 273. P. 11032-11037.
- 85.Lee, G. J. A small heat shock protein cooperates with heat shock protein 70 systems to reactivate a heat-denatured protein./G. J. Lee, E. Vierling // Plant Physiol. 2000. V.122. P. 189-198.
- 86.Jiao, W. The dramatically increased chaperone activity of small heat-shock protein IbpB is retained for an extended period of time after the stress condition is removed. / W. Jiao, W. Hong, P. Li, S. Sun, J. Ma, M. Qian, M. Hu, Z. Chang // Biochem. J. – 2008. – V. 410.– P. 63-70.
- 87.Мелькина, О.Е. Влияние шаперонов ІbpAB и ClpA на DnaKJE-зависимый рефолдинг бактериальных люцифераз в клетках *Escherichia coli* / О. Е. Мелькина, В. Ю. Котова, И. В. Манухов, Г. Б. Завильгельский // Молекулярная биология. 2011. Т. 45, № 3. С.524-528.
- 88.Ferbitz, L. Trigger factor in complex with the ribosome forms a molecular cradle for nascent proteins. / L. Ferbitz, T. Maier, H. Patzelt, B. Bukau, E. Deuerling, N. Ban // Nature. 2004. V. 431. P. 590-595.
- 89.Martinez-Hackert, E. Promiscuous substrate recognition in folding and assembly activities of the Trigger Factor chaperone. / E. Martinez-Hackert,
 W. A. Hendrickson // Cell. 2009. V. 138. P. 923-934.
- 90. Sandikci, A. Dynamic enzyme docking to the ribosome coordinates N-terminal processing with polypeptide folding. / A. Sandikci, F. Gloge, M. Martinez, M. P. Mayer, R. Wade, B. Bukau, G. Kramer // Nat. Struct. Mol. Biol. 2013. V. 20. P. 843-850.
- 91.Patzelt. H., Three-state equilibrium of Escherichia coli trigger factor. / H. Patzelt, G. Kramer, T. Rauch, H.-J. Schönfeld, B. Bukau, E. Deuerling, Biol. Chem. 2002. V. 383. P. 1611-1619.
- 92.Merz, F. Molecular mechanism and structure of Trigger Factor bound to the translating ribosome. / F.Merz, D.Boehringer, C. Schaffitzel, S. Preissler,

A. Hoffmann, T. Maier, A. Rutkowska, J. Lozza, N. Ban, B. Bukau, E. Deuerling // EMBO J. – 2008.– V. 27.–P. 1622-1632.

- 93.Crooke, E. ProOmpA is stabilized for membrane translocation by either purified *E. coli* trigger factor or canine signal recognition particle. / E. Crooke, B. Guthrie, S. Lecker, R. Lill, W. Wickner //Cell. 1988. V. 54. P. 1003-1011.
- 94.Hoffmann, A. Trigger factor forms a protective shield for nascent polypeptides at the ribosome. / A. Hoffmann, F. Merz, A. Rutkowska, B. Zachmann-Brand, E. Deuerling, B. Bukau // JBC. 2006. V. 281. P. 6539-6545.
- 95.Ferbitz, L. Trigger Factor in complex with the ribosome forms a molecular cradle for nascent proteins. / L. Ferbitz, T. Maier, H. Patzelt, B. Bukau, E. Deuerling, N. Ban // Nature. – 2004. – V. 43. – P. 590-596.
- 96.Baram, D. Structure of Trigger Factor binding domain in biologically homologous complex with eubacterial ribosome reveals its chaperone action. / D. Baram, E. Pyetan, A. Sittner, T. Auerbach-Nevo, A. Bashan, A. Yonath // Proc. Natl. Acad. Sci. – 2005. – V. 102. – P. 12017-12022.
- 97.Merz, F. The C-terminal domain of Escherichia coli trigger factor represents the central module of its chaperone activity. / F. Merz, A. Hoffmann, A. Rudkowska, B. Zachmann-Brand, B. Bukau //J. Biol. Chem. 2006. –V. 281. P. 31963-31971.
- 98. Teter, S. A. Polypeptide flux through bacterial Hsp70: DnaK cooperates with trigger factor in chaperoning nascent chains. / S. A. Teter, W. A. Houry, D. Ang, T. Tradler, D. Rockabrand, G. Fischer, P. Blum, C. Georgopoulos, F. U. Hartl // Cell. 1999. –V. 97. P. 755-765.
- 99.Hoffmann, A. Translation suppression promotes stress granule formation and cell survival in response to cold shock. / S. Hofmann, V. Cherkasova, P. Bankhead, B. Bukau, G. Stoecklin // Mol. Cell. 2012. V. 48. P. 1-12.
- Mashaghi, A. Reshaping of the conformational search of a protein by the chaperone trigger factor. / A. Mashaghi, G. Kramer // Nature. 2013. V. 500. P. 98-102.

- Saio, T. Structural basis for protein antiaggregation activity of the trigger factor chaperone. / T. Saio, X. Guan, P. Rossi, A. Economou,
 C. G. Kalodimonos.// Science. 2014. V. 344. P. 6184.
- 102. Kandror, O. Trigger factor is involved in GroEL-dependent protein degradation in Escherichia coli and promotes binding of GroEL to unfolded proteins. / O. Kandror, M. Sherman, M. Rhode, A. L. Goldberg // EMBO J. – 1995. – V.14. –P. 6021-6027.
- Kandror, O. Trigger factor associates with GroEL in vivo and promotes its binding to certain polypeptides. / O. Kandror, M. Sherman, R. Moerschell, A. L. Goldberg // JBC. 1997. V. 272. P. 1730-1734.
- 104. Deuerling, E. Trigger factor and DnaK cooperate in folding of newly synthesized proteins. / E. Deuerling, A. Schulze-Specking, T. Tomoyasu, A. Mogk, B. Bukau // Nature. 1999. V. 400. P. 493-496.
- 105. Deuerling, E. Trigger Factor and DnaK possess overlapping substrate pools and binding specificities. / E. Deuerling, H. Patzelt, S. Vorderwülbecke, T. Rauch, G. Kramer, E. Schaffitzel, A. Mogk, A. Schulze-Specking, H. Langen, B. Bukau // Mol. Microbiol. 2003. V. 47. P.1317-1328.
- 106. Genevaux, P. *In vivo* analysis of the overlapping functions of DnaK and trigger factor./ P. Genevaux, F. Keppel, F. Schwager, P.S.Langendijk-Genevaux, F. U. Hartl, C. Georgopoulos // EMBO rep. 2004. V.5. P.195-200.
- 107. Galloni, G. DnaK functions as a central hub in the E. coli chaperone network. / G. Galloni, T. Chen, S. M. Schermann, H. C. Chang, P. Genevaux, F. Agostini, G. G. Tartaglia, M. Hayer-Hartl, F. U. Hartl // Cell Reports.– 2012.– V. 1. P. 251-264.
- 108. Kang, P.-J. Identification and characterization of a new Escherichia coli gene that is a dosage-dependent suppressor of a dnaK deletion mutation. /
 P. J. Kang, E. A. Craig // J. Bacteriol. 1990. V. 172. P. 2055-2064.
- 109. Gottesman, S. The ClpXP and ClpAP proteases degrade proteins with carboxy-terminal peptide tails added by the SsrA-tagging system. / S. Gottesman, E. Roche, Y. Zhou, R.T. Sauer //Genes Dev. 1998. V. 12. P. 1338-1347.

- 110. Guthrie, B., Trigger factor depletion or overproduction causes defective cell division but does not block protein export./ B. Guthrie, W. Wickner // J. Bacteriol. 1990. V. 172. P. 5555-5562.
- 111. Kandror, O. Trigger factor is induced upon cold shock and enhances viability of *Escherichia coli* at low temperatures. / O. Kandror, A. L. Goldberg // PNAS. 1997. V. 94. P. 4978-4981.
- Piette, F. Proteomics of life at low temperatures: trigger factor is the *Pseudoalteromonas haloplanktis* TAC125. / F. Piette //Mol. Microbiol. 2010. V. 76. P.120-132.
- Robin, S. Trigger Factor from Psychrophilic bacterium *Psychrobacter frigidicola* is a monomeric chaperone. / S. Robin, D. M. Togash, A. G. Ryder, J. G. Wall // J. Bacteriol. 2009. V. 191. P. 1162-1168.
- 114. Dunlap, P. V. The Prokaryotes Procaryotic Physiology and Biochemistry
 / E. Rosenberg, E. F. DeLong, S. Lory, E. Stackebrandt, F. Thompson (Eds.). –
 4th Edition Springer, 2013. C. 13. P. 495-528.
- Fuqua, W.C. Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. / W. C. Fuqua, S.C. Winans, E. P. Greenberg // J. Bacteriol. 1994.– V. 176.– P. 269 275.
- Fuqua, W. C. Census and consensus in bacterial ecosystems: the LuxR-LuxI family of quorum-sensing transcriptional regulators / W. C. Fuqua,
 S. C. Winans, E. P. Greenberg // Annu. Rev. Microbiol. 1996. V. 50. P. 727 751.
- 117. Meighen E. A. Molecular biology of bacterial bioluminescence /
 E. A. Meighen // Microbiol. Rev. 1991. V. 55. P. 123 142.
- 118. Завильгельский, Г. Б. Quorum sensing, или как бактерии «разговаривают» друг с другом./ Г. Б. Завильгельский, И. В. Манухов // Молекуляр. биология. – 2001. – Т. 35.– С. 268-277.
- 119. Хмель, И. А. Quorum sensing регуляция экспрессии генов перспективная модель для создания лекарств против патогенных бактерий. /

И. А. Хмель, А.З. Метлицкая // Молекуляр. биология. – 2006. – Т. 40. – С. 195-211.

- 120. Engebrecht, J. Identification of genes and gene products necessary for bacterial bioluminescence. / J. Engebrecht, M. Silverman // Proc. Natl. Acad. Sci. 1984. V. 81. P. 4154 4158.
- 121. Eberhard, A. Structural identification of autoinducer of Photobacterium fischeri luciferases. / A. Eberhard, A. L. Burlingame, C. Eberhard, G. L. Kenyon, K. H. Nelson, N. J. Oppenheimer // Biochemistry. 1981. V. 20. P. 2444 2449.
- Kaplan, H. B. Diffusion of autoinducer is involved in regulation of the Vibrio fischeri luminescence system. / H. B. Kaplan, E. P. Greenberg // J. Bacteriol. – 1985. – V. 163. – P. 1210 – 1214.
- Завильгельский, Г. Б. Роль La протеазы в негативном контроле экспрессии генов *luxICDABEG Vibrio fischeri* в клетках *Escherichia coli* / Г. Б. Завильгельский, И. В. Манухов // Молекуляр. биология. 1997. Т. 31. С. 945-949.
- 124. Манухов, И. В. Внутриклеточные факторы регуляции экспрессии *lux*оперона *Vibrio fischeri* в клетках *Escherichia coli.*/ И.В. Манухов, В. Ю. Котова, Г. Б. Завильгельский // Микробиология. – 2006. – Т. 75. – С. 525-531.
- Manukhov, I.V. Comparative analysis of the lux operons in *Aliivibrio logei* KCh1 / I. V. Manukhov, S. A. Khrul'nova, A. Baranova, G. B. Zavilgelsky // J. Bacteriol. – 2011. – T. 193. – C. 3998-4001.
- 126. Хрульнова, С. А. Alivibrio logei KCh1 (изолят Камчатка): биохимические и люминесцентные характеристики, клонирование luxоперона / С. А. Хрульнова, И. В. Манухов, Г. Б. Завильгельский // Генетика. – 2011. – Т.47. – С. 1596-1603.
- 127. Tu S.-C.Biochemistry of bacterial bioluminescence. / S.-C. Tu,
 H. L. Mager // Photochem. Photobiol. 1995. V. 62.– P. 615-624.

- Baldwin, T.O. Structure of bacterial luciferase./ T. O. Baldwin,
 J. A. Christopher, F. M. Raushel, J. F. Sinclair, M. M. Ziegler, A. J. Fisher,
 I. Rayment // Current Opin.Struct.Biol. 1995. V. 5. P. 798-809.
- Fisher, A.J. The 1.5 Å resolution crystal structure of bacterialluciferase in low salt conditions. / A. J. Fisher, T. B. Thompson, J. B. Thoden, T. O. Baldwin, I. Rayment // J. Biol. Chem. 1996. V. 271. P. 21956-21968.
- Завильгельский, Г. Б. Влияние белков семейства Clp на DnaK зависимый рефолдинг бактериальных люцифераз./ Г. Б. Завильгельский, В. Ю. Котова, М. М. Мажуль, И. В. Манухов // Молекуляр. биология. 2004.– Т. 38.– С. 507-514.
- 131. Adar, Y. Y. Formation of the LuxR protein in the *Vibrio fischeri lux* system is controlled by HtpR through the GroESL proteins./ Y. Y. Adar, M. Stmaan,
 S. Ulitzur // J. Bacteriol. 1992. V. 174. P. 7138-7143.
- 132. Dolan, K.M. Evidence that GroEL, not sigma 32, is involved in transcriptional regulation of the *Vibrio fischeri* luminescence genes in *Escherichia coli*. / K. M. Dolan, E. P. Greenberg //J. Bacteriol. 1992. V. 174. P. 5132-5135.
- 133. Завильгельский, Г. Б. Lon-протеаза участвует в регуляции транскрипции *lux*-оперона *Vibrio fischeri*. / Г.Б. Завильгельский, И.В. Манухов // Генетика. – 1994. – Т. 30. – С. 337-341.
- Bertani, I. The *Pseudomonas putida* Lon protease is involved in N-acyl homoserine lactone quorum sensing regulation. / I. Bertani, G. Rampioni,
 L. Leoni, L. Venturi // BMC Microbiology. 2007. V. 7. P. 71-79.
- 135. Zhu, J. The quorum-sensing transcriptional regulator TraR requires its cognate signaling ligand for protein folding, protease resistance, and dimerization / J. Zhu, S. C. Winans // Proc. Natl. Acad. Sci. 2001. V. 98. P.
- 136. Мелькина, О. Е. С-домен белка LuxR, активатора транскрипции *lux*оперона *Vibrio fischeri*, не является мишенью для Lon протеазы. /
 О. Е. Мелькина, И. В. Манухов, Г. Б. Завильгельский // Молекуляр. биология. – 2010. – Т.44. – № 3. – С. 515-519.

- Botos, I. The catalytic domain of *Escherichia coli* Lon protease has a unique fold and a Ser-Lys dyad in the active site. / I. Botos, E. E. Melnikov,
 S. Cherry, J. E. Tropea, A. G. Khalatova, F. Rasulova, Z. Dauter, M. R. Maurizi,
 T. V. Rotanova, A. Wlodawer, A. Gustchina // J. Biol . Chem. 2004. V. 279. P. 8140-8148.
- Завильгельский, Г.Б. Анализ in vivo протеолитической активности и эффектов "секвестрирования" и негативного доминирования lon-мутантов Escherichia coli с помощью *lux*-регулона *Vibrio fischeri* / Г. Б.
 Завильгельский, Л. М. Гинодман, Г. Е. Ерошников, И. В. Манухов,
 Э. Мельников, Ф. С. Расулова, Т. В. Ротанова, Н. Н. Старкова / Мол. биол. – 1999. – Т. 33. – С. 797-802.
- Griffith, K. L. Proteolytic degradation of *Escherichia coli* transcription activators SoxS and MarA as the mechanism for reversing the induction of the superoxide (SoxRS) and multiple antibiotic resistance (Mar) regulons. /
 K. L. Griffith, I.M. Shah, R. E. Jr. Wolf. // Mol. Microbiol. 2004. V. 51. N
 ^o 6. P. 1801-16.
- 140. Van Dyk, T. *Photorhabdus luminescens luxCDABE* promoter probe vectors. / T. Van Dyk and R. A. Rosson // Methods in Molecular Biology. 1998. V. 102. P. 85-95.
- 141. Чернова, Т. А. Клонирование *lux*-генов морских бактерий *Vibrio fischeri* в клетках *E. coli.* / Т. А. Чернова, Г. Б. Завильгельский, 1991. // Биотехнология. –1991. №3. С.17-19.
- I42. Zavil'gel'skiĭ, G. B. The effects of the regulatory proteins RcsA and RcsB on the expression of the *Vibrio fischeri* lux operon in *Escherichia coli*. / G. B. Zavil'gel'skiĭ, V. Iu. Kotova, I. V. Manukhov // Mol Biol (Mosk). 2003. V. 37. №4. P. 704-711.
- 143. Завильгельский, Г. Б. Определение и сравнительный анализ последовательности *lux*-оперона *Photorhabdus luminescens*, штамм Zm1: ERIC-элементы как предполагаемые «горячие» точки рекомбинации. /
Г. Б. Завильгельский, А. П. Зарубина, И. В. Манухов // Молекуляр. биология. – 2002. – Т. 36. – С. 786–795.

- 144. Манухов, И. В. . Клонирование генов *lux*А и *lux*В *Vibrio harveyi* и экспрессия биолюминесценции в клетках *Escherichia coli* и *Bacillus subtilis*. / И. В. Манухов, Д. Е. Дужий, Г. Б. Завильгельский // Биотехнология. 1996. Т. 1. С. 3-8.
- 145. Zavilgelsky, G.B. The effect of Clp proteins on DnaK-dependent refolding of bacterial luciferases. / G. B. Zavilgelsky, V. Y. Kotova, M. M. Mazhul, I. V. Manukhov // Mol Biol (Moscow). 2004. V. 38. P. 427-433.
- Boylan, M. Fused bacterial luciferase subunits catalyze light emission in eukaryotes and prokaryotes. / M. Boylan, J. Pelletier, E. A. Meighen //J. Biol. Chem. 1989. V. 264. P. 1915-1918.
- 147. Lundovskich, I. A. Bioluminescence and Chemiluminescence: Perspectives for 21st Century/ I. A. Lundovskich, O. V. Leontieva, E. I. Dementieva, N. N. Ugarova. John Wiley & Soon, Chichester. 1999. –P. 420–424.
- Maniatis, T. Molecular cloning: A laboratory Manual. / T.Maniatis,
 F. Fritsh, J. Sambrook. N.Y.: Cold Spring Harbor. 1989.
- Mandel, M. Calcium dependent bacteriophage DNA infection. /
 M. Mandel, A. Higa // J.Mol.Biol. 1970. V. 53, P. 154-162.
- Sanger, F. DNA sequencing with chain-terminating inhibitors/ F.Sanger,
 S. Nicklen, A. R. Coulson // Proc. Natl. Acad. Sci. .1977. V. 74. P. 5463-5468.
- 151. Миллер, Дж. Эксперименты в молекулярной генетике. /Дж. Миллер;
 Под редакцией и с предисловием С.И.Алиханяна. М.: Мир. 1976. –
 С. 438.
- Kolb, V. A. Co-translational folding of a eukaryotic multidomain protein in a prokaryotic translation system. / V. A. Kolb, E. V. Makeyev, A. S. Spirin. // J. Biol. Chem. 2000. V. 275. P. 16597-16601.

- Scholz, C. Cooperation of enzymatic and chaperone functions of trigger factor in the catalysis of protein folding. / C. Scholz, G. Stoller, T. Zarnt, G. Fischer, F. X. Schmid // EMBO J. 1997. V. 16. P. 54-58
- 154. Есимбекова, Е. Н. Сравнение иммобилизованной и растворимой биферментной системы НАДН: ФМН-оксидоредуктаза-люцифераза /
 Е. Н. Есимбекова, И. Г. Торгашина, В. А. Кратасюк // Биохимия. 2009. Т. 74. С. 695-700.
- Svetlov, M. S. Effective cotranslational folding of firefly luciferase without chaperons of the Hsp70 family / M. S. Svetlov, A.Kommer, V. A. Kolb,
 A. S. Spirin // Protein Sci. 2006. V. 15. № 2. P. 242-247.
- 156. Valkova, N. Control of luminescence decay and flavin binding by the LuxA carboxyl-terminal regions in chimeric bacterial luciferases. / N. Valkova, R. Szittner, E.A. Meighen // Biochemistry. – 1999. – V. 38. – P. 13820-13828.
- 157. Tomoyasu T. Levels of DnaK and DnaJ provide tight control of heat shock gene expression and protein repair in *Escherichia coli*. / T. Tomoyasu, T. Ogura, T. Tatsuta, B. Bukau // Molecular Microbiology. 1998. V. 30. P. 567-581.
- Rudiger, S. Interaction of Hsp70 chaperones with substrates. / S. Rüdiger,
 A. Buchberger, B. Bukau // Nat Struct Biol.–1997. V. 4. № 5. P. 342-349.
- 159. Hesterkamp, T. Role of the DnaK and HscA homologs of Hsp70 chaperones in protein folding in E.coli. / T. Hesterkamp, B. Bukau // EMBO J. 1998. V. 17. №16. P. 4818-28.